Meneses-Brassea Bianca P, Borrego Edgar A, Blazer Dawn S, Sanad Mohamed F, Pourmiri Shirin, Gutierrez Denisse A, Varela-Ramirez Armando, Hadjipanayis George C, El-Gendy Ahmed A
Department of Physics, the University of Texas at El Paso (UTEP), El Paso, TX 79968, USA.
Border Biomedical Research Center, Department of Biological Sciences, the University of Texas at El Paso, El Paso, TX 79968, USA.
Nanomaterials (Basel). 2020 Oct 9;10(10):1988. doi: 10.3390/nano10101988.
Ni-Cu nanoparticles have been synthesized by reducing Ni and Cu from metal precursors using a sol-gel route followed by annealing at 300 °C for 1, 2, 3, 6, 8, and 10 h for controlled self-regulating magnetic hyperthermia applications. Particle morphology and crystal structure revealed spherical nanoparticles with a cubic structure and an average size of 50, 60, 53, 87, and 87 nm for as-made and annealed samples at 300 °C for 1, 3, 6, and 10 h, respectively. Moreover, hysteresis loops indicated ferromagnetic behavior with saturation magnetization (Ms) ranging from 13-20 emu/g at 300 K. Additionally, Zero-filed cooled and field cooled (ZFC-FC) curves revealed that each sample contains superparamagnetic nanoparticles with a blocking temperature (T) of 196-260 K. Their potential use for magnetic hyperthermia was tested under the therapeutic limits of an alternating magnetic field. The samples exhibited a heating rate ranging from 0.1 to 1.7 °C/min and a significant dissipated heating power measured as a specific absorption rate (SAR) of 6-80 W/g. The heating curves saturated after reaching the Curie temperature (Tc), ranging from 30-61 °C within the therapeutic temperature limit. An in vitro cytotoxicity test of these Ni-Cu samples in biological tissues was performed via exposing human breast cancer MDA-MB231 cells to a gradient of concentrations of the sample with 53 nm particles (annealed at 300 °C for 3 h) and reviewing their cytotoxic effects. For low concentrations, this sample showed no toxic effects to the cells, revealing its biocompatibility to be used in the future for in vitro/in vivo magnetic hyperthermia treatment of cancer.
通过溶胶 - 凝胶法从金属前驱体中还原镍和铜,合成了镍 - 铜纳米颗粒,随后在300°C下分别退火1、2、3、6、8和10小时,用于可控自调节磁热疗应用。颗粒形态和晶体结构表明,对于制备态以及在300°C下分别退火1、3、6和10小时的样品,纳米颗粒呈球形,具有立方结构,平均尺寸分别为50、60、53、87和87纳米。此外,磁滞回线表明其具有铁磁行为,在300 K时饱和磁化强度(Ms)范围为13 - 20 emu/g。另外,零场冷却和场冷却(ZFC - FC)曲线表明,每个样品都包含超顺磁性纳米颗粒,其阻塞温度(T)为196 - 260 K。在交变磁场的治疗极限下测试了它们在磁热疗中的潜在用途。样品的加热速率范围为0.1至1.7°C/分钟,以比吸收率(SAR)衡量的显著耗散热功率为6 - 80 W/g。加热曲线在达到居里温度(Tc)后饱和,居里温度在治疗温度极限范围内为30 - 61°C。通过将人乳腺癌MDA - MB231细胞暴露于具有53纳米颗粒(在300°C下退火3小时)的样品浓度梯度下,并观察其细胞毒性作用,对这些镍 - 铜样品在生物组织中的体外细胞毒性进行了测试。对于低浓度,该样品对细胞没有毒性作用,表明其生物相容性良好,未来可用于癌症的体外/体内磁热疗治疗。
Nanomaterials (Basel). 2020-10-9
J Nanosci Nanotechnol. 2007-12
J Nanosci Nanotechnol. 2019-9-1
Nanomaterials (Basel). 2021-9-15
Nanoscale Res Lett. 2018-11-23
Nanomaterials (Basel). 2022-2-6
Cell Oncol (Dordr). 2016-6
Nanotechnology. 2014-11-14
IEEE Trans Biomed Eng. 1984-1