Institute of Bioinformatics and Structural Biology, Department of Life Science, National Tsing Hua University, Hsinchu 30013, Taiwan.
Immunology Research Center, National Health Research Institutes, Zhunan 35053, Taiwan.
Int J Mol Sci. 2020 Oct 12;21(20):7515. doi: 10.3390/ijms21207515.
Cysteine-based protein tyrosine phosphatases (Cys-based PTPs) perform dephosphorylation to regulate signaling pathways in cellular responses. The hydrogen bonding network in their active site plays an important conformational role and supports the phosphatase activity. Nearly half of dual-specificity phosphatases (DUSPs) use three conserved residues, including aspartate in the D-loop, serine in the P-loop, and asparagine in the N-loop, to form the hydrogen bonding network, the D-, P-, N-triloop interaction (DPN-triloop interaction). In this study, DUSP22 is used to investigate the importance of the DPN-triloop interaction in active site formation. Alanine mutations and somatic mutations of the conserved residues, D57, S93, and N128 substantially decrease catalytic efficiency (/) by more than 10-fold. Structural studies by NMR and crystallography reveal that each residue can perturb the three loops and induce conformational changes, indicating that the hydrogen bonding network aligns the residues in the correct positions for substrate interaction and catalysis. Studying the DPN-triloop interaction reveals the mechanism maintaining phosphatase activity in N-loop-containing PTPs and provides a foundation for further investigation of active site formation in different members of this protein class.
半胱氨酸残基依赖的蛋白酪氨酸磷酸酶(Cys-based PTPs)通过去磷酸化作用来调节细胞反应中的信号通路。其活性位点中的氢键网络起着重要的构象作用,并支持磷酸酶的活性。近一半的双特异性磷酸酶(DUSPs)利用三个保守残基,包括 D 环中的天冬氨酸、P 环中的丝氨酸和 N 环中的天冬酰胺,形成氢键网络,即 D、P、N-三螺旋相互作用(DPN-三螺旋相互作用)。在这项研究中,DUSP22 被用来研究活性位点形成中 DPN-三螺旋相互作用的重要性。保守残基 D57、S93 和 N128 的丙氨酸突变和体细胞突变使催化效率(/)降低超过 10 倍。通过 NMR 和晶体学的结构研究揭示了每个残基都可以扰动三个环并诱导构象变化,表明氢键网络将残基排列在与底物相互作用和催化相关的正确位置。研究 DPN-三螺旋相互作用揭示了在含 N-环的 PTP 中维持磷酸酶活性的机制,并为进一步研究该蛋白家族不同成员的活性位点形成提供了基础。