Feinendegen L E, Mühlensiepen H
Int J Radiat Biol Relat Stud Phys Chem Med. 1987 Sep;52(3):469-79. doi: 10.1080/09553008714551931.
The influence of a strong homogeneous and stationary magnetic field (SMF) on the activity of the enzyme thymidine kinase (TdR-K) in bone marrow cells, and as a consequence of this on the incorporation of 125I-labelled 5-iodo-2-deoxyuridine (125IUdR) into DNA of mice and into isolated bone marrow cells in vitro, was assayed after exposure of immobilized mice. No effect could be elicited in moving mice, in cells in suspension or in enzyme in solution. The response depended on the body temperature during exposure: at 27 degrees C and 29 degrees C there was an increase and at 37 degrees C and a depression of enzyme activity. The TdR-K activity at low temperature increased with the field strength ranging from 0.2 to 1.4T. Thirty minutes were required for full expression of the effect at 1.4T; 5-10 min were needed after exposure for a return to base-line levels. Mice were given total-body irradiation at a dose of 0.1 Gy 137Cs gamma rays and then exposed immediately to a magnetic field at 1.4T for 30 min at a body temperature of 27 degrees C; gamma irradiation no longer inhibited the enzyme. Exposure to the magnetic field further removed from the time of gamma irradiation, did not negate the inhibitory effect of gamma irradiation. The observed responses to given challenges in this complex system support the hypothesis that the magnetic field affects TdR-K activity by way of a mediating structure, such as a membrane.