IEEE Trans Neural Netw Learn Syst. 2021 Aug;32(8):3723-3735. doi: 10.1109/TNNLS.2020.3027284. Epub 2021 Aug 3.
This article focuses on the design of an adaptive event-triggered sampled-data control (ETSDC) mechanism for synchronization of reaction-diffusion neural networks (RDNNs) with random time-varying delays. Different from the existing ETSDC schemes with predetermined constant thresholds, an adaptive ETSDC mechanism is proposed for RDNNs. The adaptive ETSDC mechanism can be promptly adaptively adjusted since the threshold function is based on the current sampled and latest transmitted signals. Thus, the adaptive ETSDC mechanism can effectively save communication resources for RDNNs. By taking the influence of uncertain factors, the random time-varying delays are considered, which belongs to two intervals in a probabilistic way. Then, by constructing an appropriate Lyapunov-Krasovskii functional (LKF), new synchronization criteria are derived for RDNNs. By solving a set of linear matrix inequalities (LMIs), the desired adaptive ETSDC gain is obtained. Finally, the merits of the adaptive ETSDC mechanism and the effectiveness of the proposed results are verified by one numerical example.
本文针对具有随机时变时滞的反应扩散神经网络(RDNN)的同步问题,设计了一种自适应事件触发采样数据控制(ETSDC)机制。与现有的具有预定常数阈值的 ETSD 方案不同,本文提出了一种用于 RDNN 的自适应 ETSD 机制。由于阈值函数基于当前采样和最新传输的信号,因此自适应 ETSD 机制可以及时自适应地进行调整。因此,自适应 ETSD 机制可以有效地节省 RDNN 的通信资源。通过考虑不确定因素的影响,本文以概率的方式将随机时变时滞分为两个区间进行考虑。然后,通过构建适当的李雅普诺夫-克拉索夫斯基函数(LKF),为 RDNN 推导出新的同步准则。通过求解一组线性矩阵不等式(LMIs),得到了期望的自适应 ETSD 增益。最后,通过一个数值实例验证了自适应 ETSD 机制的优点和所提出结果的有效性。