School of Intelligent Systems Engineering, Sun Yat-sen University, Guangzhou 510006, China.
Faculty of Information Technology, Beijing Laboratory of Smart Environmental Protection, Beijing Institute of Artificial Intelligence, Beijing University of Technology, Beijing 100124, China.
Neural Netw. 2023 Sep;166:366-378. doi: 10.1016/j.neunet.2023.07.024. Epub 2023 Jul 20.
Under spatially averaged measurements (SAMs) and deception attacks, this article mainly studies the problem of extended dissipativity output synchronization of delayed reaction-diffusion neural networks via an adaptive event-triggered sampled-data (AETSD) control strategy. Compared with the existing ETSD control methods with constant thresholds, our scheme can be adaptively adjusted according to the current sampling and latest transmitted signals and is realized based on limited sensors and actuators. Firstly, an AETSD control scheme is proposed to save the limited transmission channel. Secondly, some synchronization criteria under SAMs and deception attacks are established by utilizing Lyapunov-Krasovskii functional and inequality techniques. Then, by solving linear matrix inequalities (LMIs), we obtain the desired AETSD controller, which can satisfy the specified level of extended dissipativity behaviors. Lastly, one numerical example is given to demonstrate the validity of the proposed method.
本文主要针对时滞反应扩散神经网络,在空间平均测量(SAM)和欺骗攻击下,通过自适应事件触发采样数据(AETSD)控制策略,研究了扩展耗散输出同步问题。与现有的具有固定阈值的 ETSD 控制方法相比,我们的方案可以根据当前采样和最新传输信号进行自适应调整,并基于有限的传感器和执行器实现。首先,提出了一种 AETSD 控制方案以节省有限的传输通道。其次,利用李雅普诺夫-克拉索夫斯基泛函和不等式技术,建立了在 SAM 和欺骗攻击下的同步判据。然后,通过求解线性矩阵不等式(LMIs),得到了期望的 AETSD 控制器,它可以满足指定的扩展耗散性能水平。最后,通过一个数值例子验证了所提方法的有效性。