Preparatory Institute for Engineering Studies of Tunis, Fluids and Materials Laboratory, University of Tunis, 1089, Tunis, Tunisia.
Environ Sci Pollut Res Int. 2021 Aug;28(30):40400-40408. doi: 10.1007/s11356-020-11188-y. Epub 2020 Oct 15.
Currently, investigations are intensively conducted on modeling, forecasting, and studying the dynamic spread of coronavirus (Covid-19) new pandemic. In the present work, the sigmoidal-Boltzmann mathematical model was applied to study the Covid-19 spread in 15 different countries. The cumulative number of infected persons I has been accurately fitted by the sigmoidal-Boltzmann equation (SBE), giving rise to different epidemiological parameters such as the pandemic peak t, the maximum number of infected persons I, and the time of the epidemic stabilization t. The time constant relative to the sigmoid Δt (called also the slope factor) was revealed to be the determining parameter which influences all the epidemiological parameters. Empirical laws between the different parameters allowed us to propose a modified sigmoidal-Boltzmann equation describing the spread of the pandemic. The expression of the spread speed V was further determined as a function of the sigmoid parameters. This made it possible to assess the maximum speed of spread of the virus V and to trace the speed profile in each country. In addition, for countries undergoing a second pandemic wave, the cumulative number of infected people I has been successfully adjusted by a double sigmoidal-Boltzmann equation (DSBE) allowing the comparison between the two waves. Finally, the comparison between the maximum virus spread of two waves V and V showed that the intensity of the second wave of Covid-19 is low compared to the first for all the countries studied.
目前,人们正在积极研究冠状病毒(Covid-19)新大流行的建模、预测和动态传播。在本工作中,应用了 sigmoidal-Boltzmann 数学模型来研究 15 个不同国家的 Covid-19 传播情况。感染人数的累积 I 通过 sigmoidal-Boltzmann 方程(SBE)得到了准确拟合,得出了不同的流行病学参数,如大流行高峰期 t、感染人数的最大值 I 和流行稳定时间 t。相对于 sigmoid 的时间常数Δt(也称为斜率因子)被揭示为影响所有流行病学参数的决定参数。不同参数之间的经验规律使我们能够提出一个改进的 sigmoidal-Boltzmann 方程来描述大流行的传播。传播速度 V 的表达式进一步被确定为 sigmoid 参数的函数。这使得评估病毒的最大传播速度 V 成为可能,并追踪每个国家的速度分布。此外,对于正在经历第二波大流行的国家,通过双 sigmoidal-Boltzmann 方程(DSBE)成功地调整了感染人数的累积 I,从而可以对两次波进行比较。最后,两次波的最大病毒传播 V 和 V 的比较表明,与第一次相比,所有研究国家的第二次 Covid-19 波的强度都较低。