Suppr超能文献

保守的蜕皮/昼夜节律调节剂 NHR-23/NR1F1 作为精子发生的必需共调节剂。

The conserved molting/circadian rhythm regulator NHR-23/NR1F1 serves as an essential co-regulator of spermatogenesis.

机构信息

Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064, USA.

Department of Biology, William & Mary, Williamsburg, VA 23187, USA.

出版信息

Development. 2020 Nov 27;147(22):dev193862. doi: 10.1242/dev.193862.

Abstract

In sexually reproducing metazoans, spermatogenesis is the process by which uncommitted germ cells give rise to haploid sperm. Work in model systems has revealed mechanisms controlling commitment to the sperm fate, but how this fate is subsequently executed remains less clear. While studying the well-established role of the conserved nuclear hormone receptor transcription factor, NHR-23/NR1F1, in regulating molting, we discovered that NHR-23/NR1F1 is also constitutively expressed in developing primary spermatocytes and is a critical regulator of spermatogenesis. In this novel role, NHR-23/NR1F1 functions downstream of the canonical sex-determination pathway. Degron-mediated depletion of NHR-23/NR1F1 within hermaphrodite or male germlines causes sterility due to an absence of functional sperm, as depleted animals produce arrested primary spermatocytes rather than haploid sperm. These spermatocytes arrest in prometaphase I and fail to either progress to anaphase or attempt spermatid-residual body partitioning. They make sperm-specific membranous organelles but fail to assemble their major sperm protein into fibrous bodies. NHR-23/NR1F1 appears to function independently of the known SPE-44 gene regulatory network, revealing the existence of an NHR-23/NR1F1-mediated module that regulates the spermatogenesis program.

摘要

在有性生殖后生动物中,精子发生是指未定型的生殖细胞发育为单倍体精子的过程。在模式生物中的研究揭示了控制向精子命运分化的机制,但随后命运是如何执行的仍不太清楚。在研究保守的核激素受体转录因子 NHR-23/NR1F1 调控蜕皮的既定作用时,我们发现 NHR-23/NR1F1 也在发育中的初级精母细胞中持续表达,是精子发生的关键调节因子。在这个新的作用中,NHR-23/NR1F1 作为经典性别决定途径的下游发挥作用。通过 degron 介导在雌雄同体或雄性生殖系中耗尽 NHR-23/NR1F1 会导致不育,因为缺乏功能性精子,耗尽的动物产生停滞的初级精母细胞而不是单倍体精子。这些精母细胞在前期 I 期停滞,无法进入后期或尝试精细胞-残留体分离。它们产生精子特异性膜细胞器,但无法将其主要精子蛋白组装成纤维体。NHR-23/NR1F1 似乎独立于已知的 SPE-44 基因调控网络发挥作用,揭示了存在一个由 NHR-23/NR1F1 介导的模块,调节精子发生程序。

相似文献

2
NHR-23 and SPE-44 regulate distinct sets of genes during Caenorhabditis elegans spermatogenesis.
G3 (Bethesda). 2022 Nov 4;12(11). doi: 10.1093/g3journal/jkac256.
3
The intrinsically disordered protein SPE-18 promotes localized assembly of MSP in spermatocytes.
Development. 2021 Mar 5;148(5):dev195875. doi: 10.1242/dev.195875.
5
Premature sperm activation and defective spermatogenesis caused by loss of spe-46 function in Caenorhabditis elegans.
PLoS One. 2013;8(3):e57266. doi: 10.1371/journal.pone.0057266. Epub 2013 Mar 6.
8
The zinc transporter ZIPT-7.1 regulates sperm activation in nematodes.
PLoS Biol. 2018 Jun 7;16(6):e2005069. doi: 10.1371/journal.pbio.2005069. eCollection 2018 Jun.

引用本文的文献

1
A wrinkle in timers: evolutionary rewiring of conserved biological timekeepers.
Trends Biochem Sci. 2025 Apr;50(4):344-355. doi: 10.1016/j.tibs.2025.01.006. Epub 2025 Feb 13.
2
Loss of the Na+/K+ cation pump CATP-1 suppresses nekl-associated molting defects.
G3 (Bethesda). 2024 Oct 21;14(12). doi: 10.1093/g3journal/jkae244.
3
Clock gene homologs lin-42 and kin-20 regulate circadian rhythms in C. elegans.
Sci Rep. 2024 Jun 5;14(1):12936. doi: 10.1038/s41598-024-62303-9.
4
The NHR-23-regulated putative protease inhibitor gene is necessary for cuticle structure and function.
bioRxiv. 2024 Oct 17:2024.05.12.593762. doi: 10.1101/2024.05.12.593762.
5
Ror homolog nhr-23 is essential for both developmental clock and circadian clock in C. elegans.
Commun Biol. 2024 Feb 28;7(1):243. doi: 10.1038/s42003-024-05894-3.
6
An knock-in allele for investigation of molting and oscillatory gene regulation.
MicroPubl Biol. 2023 Oct 18;2023. doi: 10.17912/micropub.biology.000993. eCollection 2023.
7
A spontaneous loss-of-function allele in .
MicroPubl Biol. 2023 Oct 15;2023. doi: 10.17912/micropub.biology.000994. eCollection 2023.
8
An knock-in allele for studying spermatogenesis and molting.
MicroPubl Biol. 2023 Oct 2;2023. doi: 10.17912/micropub.biology.000996. eCollection 2023.
9
A circadian-like gene network programs the timing and dosage of heterochronic miRNA transcription during C. elegans development.
Dev Cell. 2023 Nov 20;58(22):2563-2579.e8. doi: 10.1016/j.devcel.2023.08.006. Epub 2023 Aug 28.

本文引用的文献

2
The full-length transcriptome of using direct RNA sequencing.
Genome Res. 2020 Feb;30(2):299-312. doi: 10.1101/gr.251314.119. Epub 2020 Feb 5.
3
A developmental gene regulatory network for anchor cell invasion.
Development. 2020 Jan 2;147(1):dev185850. doi: 10.1242/dev.185850.
4
Distinct roles of two myosins in C. elegans spermatid differentiation.
PLoS Biol. 2019 Apr 16;17(4):e3000211. doi: 10.1371/journal.pbio.3000211. eCollection 2019 Apr.
5
Spatial Transcriptomics of C. elegans Males and Hermaphrodites Identifies Sex-Specific Differences in Gene Expression Patterns.
Dev Cell. 2018 Dec 17;47(6):801-813.e6. doi: 10.1016/j.devcel.2018.10.016. Epub 2018 Nov 8.
6
Spatiotemporal Gene Expression Analysis of the Germline Uncovers a Syncytial Expression Switch.
Genetics. 2018 Oct;210(2):587-605. doi: 10.1534/genetics.118.301315. Epub 2018 Aug 9.
7
Auxin-Mediated Sterility Induction System for Longevity and Mating Studies in .
G3 (Bethesda). 2018 Jul 31;8(8):2655-2662. doi: 10.1534/g3.118.200278.
8
The transcription factor SOX30 is a key regulator of mouse spermiogenesis.
Development. 2018 May 30;145(11):dev164723. doi: 10.1242/dev.164723.
10
Genome-wide analysis of gene regulation mechanisms during Drosophila spermatogenesis.
Epigenetics Chromatin. 2018 Apr 2;11(1):14. doi: 10.1186/s13072-018-0183-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验