Mathematical Institute, Leiden University; Origins Center, Leiden, Netherlands.
Informatics Institute, University of Amsterdam; Origins Center, Amsterdam, Netherlands.
Elife. 2020 Oct 16;9:e56349. doi: 10.7554/eLife.56349.
At the origin of multicellularity, cells may have evolved aggregation in response to predation, for functional specialisation or to allow large-scale integration of environmental cues. These group-level properties emerged from the interactions between cells in a group, and determined the selection pressures experienced by these cells. We investigate the evolution of multicellularity with an evolutionary model where cells search for resources by chemotaxis in a shallow, noisy gradient. Cells can evolve their adhesion to others in a periodically changing environment, where a cell's fitness solely depends on its distance from the gradient source. We show that multicellular aggregates evolve because they perform chemotaxis more efficiently than single cells. Only when the environment changes too frequently, a unicellular state evolves which relies on cell dispersal. Both strategies prevent the invasion of the other through interference competition, creating evolutionary bi-stability. Therefore, collective behaviour can be an emergent selective driver for undifferentiated multicellularity.
在多细胞生物起源的过程中,细胞可能会为了应对捕食、功能特化或允许大规模整合环境线索而进化为聚集。这些群体水平的特性源于群体中细胞之间的相互作用,并决定了这些细胞所经历的选择压力。我们通过一个进化模型来研究多细胞生物的进化,在这个模型中,细胞通过趋化作用在一个浅而嘈杂的梯度中寻找资源。细胞可以在周期性变化的环境中进化它们之间的黏附性,其中细胞的适应性仅取决于它与梯度源的距离。我们表明,多细胞聚集体之所以进化,是因为它们比单细胞更有效地进行趋化作用。只有当环境变化过于频繁时,才会进化出一种依赖于细胞扩散的单细胞状态。这两种策略都通过干扰竞争来阻止对方的入侵,从而产生进化的双稳定性。因此,集体行为可能是未分化的多细胞性的一个新兴选择驱动因素。