Wu Qiumin, Chen Jinzhu, Liu Zhen, Xu Yisheng
State Key Laboratory of Chemical Engineering, International Joint Research Center of Green Energy Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
Department of Chemistry, College of Chemistry and Materials Science, Jinan University, No. 855, East Xingye Avenue, Panyu District, Guangzhou 511443, China.
ACS Appl Mater Interfaces. 2020 Oct 28;12(43):48700-48711. doi: 10.1021/acsami.0c15396. Epub 2020 Oct 16.
Carbonylation of nitroaromatics with CO is extensively investigated with efficient but precious group 8-10 metal-based catalysts for the productions of both industrially and academically important chemicals such as isocyanates, formamides, carbamates, ureas and several types of heterocyclic compounds. Herein, we report that rationally designed nitrogen-doped carbon nanotubes (N-CNTs) exhibit catalytic activity toward CO activation for carbonylation of nitroaromatics to benzimidazolinones and ureas. Under the optimal conditions, N-CNT-promoted intramolecular carbonylation of 2-nitroaniline () with CO leads to formation of 1,3-dihydro-2-benzo[]imidazol-2-one in 90% yield. Moreover, an intermolecular carbonylation of nitrobenzene and aniline with CO in the presence of the N-CNT gives 70% yield of ,'-diphenylurea. The N-CNT is also applicable to various benzimidazolinones and phenyl ureas; moreover, it can be readily reused at least 9 times for the carbonylation. The theoretical investigation based on density functional theory calculations indicates that the graphitic N of the N-CNT plays a crucial step in the reduction with CO. The correlation between the structural defect and catalytic performance of the N-CNT reveals an enhanced catalytic activity of the N-CNT with its increased structural defects. This research thus represents a major breakthrough in CO activation for nitroaromatic carbonylation with environmental-friendly, low-cost, and carbon-based catalysts as a potential alternative to expensive and scarce noble-metal-based catalysts.
使用高效但昂贵的第8 - 10族金属基催化剂对硝基芳烃与一氧化碳的羰基化反应进行了广泛研究,用于生产工业和学术上重要的化学品,如异氰酸酯、甲酰胺、氨基甲酸酯、脲以及几种类型的杂环化合物。在此,我们报告合理设计的氮掺杂碳纳米管(N - CNTs)对一氧化碳活化表现出催化活性,可将硝基芳烃羰基化为苯并咪唑啉酮和脲。在最佳条件下,N - CNT促进的2 - 硝基苯胺()与一氧化碳的分子内羰基化反应生成1,3 - 二氢 - 2 - 苯并[]咪唑 - 2 - 酮,产率为90%。此外,在N - CNT存在下,硝基苯和苯胺与一氧化碳的分子间羰基化反应生成,' - 二苯基脲的产率为70%。N - CNT也适用于各种苯并咪唑啉酮和苯基脲;而且,它可以很容易地至少重复使用9次用于羰基化反应。基于密度泛函理论计算的理论研究表明,N - CNT的石墨氮在与一氧化碳的还原反应中起关键作用。N - CNT的结构缺陷与催化性能之间的相关性揭示了随着结构缺陷增加,N - CNT的催化活性增强。因此,这项研究代表了在硝基芳烃羰基化的一氧化碳活化方面的一个重大突破,使用环境友好、低成本的碳基催化剂作为昂贵且稀缺的贵金属基催化剂的潜在替代品。