Suppr超能文献

通过原位掺杂Fe(III)作为活化中心增强花状BiOCl的氮光固定活性。

Enhanced N photofixation activity of flower-like BiOCl by in situ Fe(III) doped as an activation center.

作者信息

Shen Zhengfeng, Li Feifei, Lu Jiangrui, Wang Zhidan, Li Rui, Zhang Xiaochao, Zhang Changming, Wang Yawen, Wang Yunfang, Lv Zhiping, Liu Jianxin, Fan Caimei

机构信息

College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China.

College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China; Affiliated Tumor Hospital of Shanxi Medical University, Taiyuan 030013, PR China.

出版信息

J Colloid Interface Sci. 2021 Feb 15;584:174-181. doi: 10.1016/j.jcis.2020.09.111. Epub 2020 Oct 6.

Abstract

Photocatalytic nitrogen fixation has been considered to be a safe, green, eco-friendly, and sustainable technology. However, photoinduced activation of inert dinitrogen is an important factor hindering the development of this technology. Herein, in-situ Fe doped flower-like BiOCl with highly active sites exposure was prepared by a solvent thermal method, which has excellent performance of N photofixation. Compared with virgin BiOCl with no nitrogen fixation activity, Fe-BiOCl reached 30 μmol·L·h ammonia evolution rate under simulated sunlight without any sacrificial reagent. Characterization results demonstrated that the enhancement of N photofixation capacity was mainly attributed to the in-situ doped Fe in BiOCl, the doped Fe not only acts as a reaction center for N activation also as an "electron transfer bridge" trapping and migrating electrons from BiOCl to N molecules. Furthermore, the transformation of crystal facets from virgin BiOCl (001) to Fe-BiOCl (110) and (102) is more conducive for the exposure and accessibility of iron reactive sites. This work developed a potential strategy by in-situ introducing Fe active sites in BiOCl semiconductor substrate, which establishes a good basis for the application of semiconductor catalysts in nitrogen fixation.

摘要

光催化固氮被认为是一种安全、绿色、环保且可持续的技术。然而,光致惰性双氮的活化是阻碍该技术发展的一个重要因素。在此,通过溶剂热法制备了具有高活性位点暴露的原位铁掺杂花状BiOCl,其具有优异的固氮性能。与没有固氮活性的原始BiOCl相比,Fe-BiOCl在模拟太阳光下,无需任何牺牲试剂,氨析出速率达到30 μmol·L·h。表征结果表明,固氮能力的增强主要归因于BiOCl中原位掺杂的铁,掺杂的铁不仅作为氮活化的反应中心,还作为“电子转移桥”,捕获电子并将其从BiOCl转移到氮分子。此外,晶面从原始BiOCl(001)转变为Fe-BiOCl(110)和(102)更有利于铁活性位点的暴露和可及性。这项工作通过在BiOCl半导体基底中原位引入铁活性位点,开发了一种潜在的策略,为半导体催化剂在固氮中的应用奠定了良好的基础。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验