Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, PR China; State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, PR China.
Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, PR China.
J Colloid Interface Sci. 2019 Nov 15;556:111-119. doi: 10.1016/j.jcis.2019.08.048. Epub 2019 Aug 13.
Bismuth oxychloride micro-sheets with rich oxygen vacancies (BiOCl-OV) are firstly prepared through a surfactant assisted solvothermal method. Due to the selective surfactant adsorption, the as-prepared BiOCl-OV exposes high percentage {0 0 1} facets. Moreover, the ion-exchange process not only introduces Br atoms but also creates cavities in crystal structure of the Br doped BiOCl-OV (Br-BiOCl-OV). When used as photocatalyst for N photo-fixation, the optimized Br-BiOCl-OV demonstrates an ammonia producing rate of 6.3 μmol h under visible light irradiation, which is greatly enhanced than that of pristine BiOCl-OV (4.1 μmol h). The density functional theory (DFT) calculation suggests that because of the introduced Br atoms and the oxygen vacancies, the adsorbed N on Br-BiOCl-OV exhibits greater NN bond length than that adsorbed on pristine BiOCl-OV, attributing to the effective activation of the inert NN bonds. Photocurrent response, state/transient PL spectra and electrochemical impedance spectroscopy indicate that the Br-BiOCl-OV possesses promoted charge separation and suppressed charge recombination, which finally leads to the high N photo-fixation performances.
通过表面活性剂辅助溶剂热法首次制备了具有丰富氧空位的氧化氯铋微晶片(BiOCl-OV)。由于选择性表面活性剂吸附,所制备的 BiOCl-OV 暴露了高比例的{0 0 1}面。此外,离子交换过程不仅引入了 Br 原子,而且在 Br 掺杂 BiOCl-OV(Br-BiOCl-OV)的晶体结构中形成了空腔。当用作光催化剂进行 N 光固定时,优化后的 Br-BiOCl-OV 在可见光照射下表现出 6.3 μmol h 的氨生成速率,比原始 BiOCl-OV(4.1 μmol h)大大提高。密度泛函理论(DFT)计算表明,由于引入的 Br 原子和氧空位,吸附在 Br-BiOCl-OV 上的 N 表现出比吸附在原始 BiOCl-OV 上更大的 NN 键长,这归因于对惰性 NN 键的有效活化。光电流响应、瞬态光致发光光谱和电化学阻抗谱表明,Br-BiOCl-OV 具有促进的电荷分离和抑制的电荷复合,最终导致高的 N 光固定性能。