Suppr超能文献

基于使用伪标签的半监督核局部Fisher判别分析的轴承缺陷诊断

Bearing defect diagnosis based on semi-supervised kernel Local Fisher Discriminant Analysis using pseudo labels.

作者信息

Tao Xinmin, Ren Chao, Li Qing, Guo Wenjie, Liu Rui, He Qing, Zou Junrong

机构信息

College of Engineering & Technology, NorthEast Forestry University, 150040, Harbin, China.

出版信息

ISA Trans. 2021 Apr;110:394-412. doi: 10.1016/j.isatra.2020.10.033. Epub 2020 Oct 13.

Abstract

In bearings defect diagnosis applications, information fusion has been widely used to improve identification accuracy for different types of faults, which may lead to high-dimensionality and information redundancy of the data and thus degenerate the classification performance. Therefore, it is a major challenge for machinery fault diagnosis to extract optimal features from high-dimensional and redundant data for classification. In addition, in order to guarantee the performance of fault diagnosis, conventional supervised methods usually require a large amount of labeled data available for learning. However, it is extremely difficult, costly and time-consuming to collect faulty labeled samples with class information, especially for expensive and critical machines, which often results in only a few labeled data available with a large amount of unlabeled data redundant. In this paper, we propose a novel bearing defect diagnosis model based on semi-supervised kernel local Fisher Discriminant Analysis (SSKLFDA) using pseudo labels, which can effectively extract optimal features for classification and simultaneously utilize unlabeled data for regularizing the supervised dimensionality reduction. The proposed SSKLFDA first adopts Density Peak Clustering technique to generate pseudo cluster labels for the labeled and unlabeled data and then regularizes the between-class scatter and within-class scatter according to two corresponding regularization strategies associated with the generated pseudo cluster labels. This regularization can further improve the discriminant performance of the extracted features and also make it suitable for the cases with the multimodality and noises. In order to accommodate for non-linear feature extraction, the kernel version of the proposed method is also provided with the introduction of kernel trick. The experimental results under different feature dimensions, numbers of labeled data, and subsequent classifiers scenarios demonstrate that the proposed SSKLFDA based bearings fault diagnosis model achieves higher classification performance than other existing dimensionality reduction methods-based models.

摘要

在轴承故障诊断应用中,信息融合已被广泛用于提高对不同类型故障的识别精度,这可能导致数据的高维度和信息冗余,从而使分类性能退化。因此,从高维冗余数据中提取最优特征用于分类是机械故障诊断的一项重大挑战。此外,为了保证故障诊断的性能,传统的监督方法通常需要大量可用的标注数据进行学习。然而,收集带有类别信息的故障标注样本极其困难、成本高昂且耗时,尤其是对于昂贵且关键的机器,这往往导致只有少量标注数据可用,同时存在大量冗余的未标注数据。在本文中,我们提出了一种基于半监督核局部Fisher判别分析(SSKLFDA)并使用伪标签的新型轴承故障诊断模型,该模型能够有效地提取用于分类的最优特征,同时利用未标注数据对监督降维进行正则化。所提出的SSKLFDA首先采用密度峰值聚类技术为标注数据和未标注数据生成伪聚类标签,然后根据与生成的伪聚类标签相关的两种相应正则化策略对类间散度和类内散度进行正则化。这种正则化可以进一步提高提取特征的判别性能,并且使其适用于具有多模态和噪声的情况。为了适应非线性特征提取,通过引入核技巧还提供了该方法的核版本。在不同特征维度、标注数据数量以及后续分类器场景下的实验结果表明,所提出的基于SSKLFDA的轴承故障诊断模型比其他现有的基于降维方法的模型具有更高的分类性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验