Florey Institute of Neuroscience and Mental Health, Australia.
Bio21 Advanced Microscopy Facility, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Australia.
Brain Res. 2021 Jan 15;1751:147157. doi: 10.1016/j.brainres.2020.147157. Epub 2020 Oct 15.
Dravet Syndrome (DS) is a genetic neurodevelopmental disease. Recurrent severe seizures begin in infancy and co-morbidities follow, including developmental delay, cognitive and behavioral dysfunction. A majority of DS patients have an SCN1A heterozygous gene mutation. This mutation causes a loss-of-function in inhibitory neurons, initiating seizure onset. We have investigated whether the sodium channelopathy may result in structural changes in the DS model independent of seizures. Morphometric analyses of axons within the corpus callosum were completed at P16 and P50 in Scn1a heterozygote KO male mice and their age-matched wild-type littermates. Trainable machine learning algorithms were used to examine electron microscopy images of ~400 myelinated axons per animal, per genotype, including myelinated axon cross-section area, frequency distribution and g-ratios. Pilot data for Scn1a heterozygote KO mice demonstrate the average axon caliber was reduced in developing and adult mice. Qualitative analysis also shows micro-features marking altered myelination at P16 in the DS model, with myelin out-folding and myelin debris within phagocytic cells. The data has indicated, in the absence of behavioral seizures, factors that governed a shift toward small calibre axons at P16 have persisted in adult Scn1a heterozygote KO corpus callosum. The pilot study provides a basis for future meta-analysis that will enable robust estimates of the effects of the sodium channelopathy on axon architecture. We propose that early therapeutic strategies in DS could help minimize the effect of sodium channelopathies, beyond the impact of overt seizures, and therefore achieve better long-term treatment outcomes.
德拉维雷综合征(DS)是一种遗传性神经发育疾病。婴儿期反复发作严重癫痫,随后出现发育迟缓、认知和行为功能障碍等并发症。大多数 DS 患者存在 SCN1A 杂合基因突变。这种突变导致抑制性神经元功能丧失,引发癫痫发作。我们研究了钠离子通道病是否会导致 DS 模型在没有癫痫发作的情况下发生结构变化。在 Scn1a 杂合子 KO 雄性小鼠及其同龄野生型同窝仔鼠中,我们分别在 P16 和 P50 时对胼胝体内的轴突进行了形态计量学分析。使用可训练的机器学习算法检查了每个动物、每个基因型约 400 个有髓轴突的电子显微镜图像,包括有髓轴突的横截面积、频率分布和 g 比值。Scn1a 杂合子 KO 小鼠的初步数据表明,在发育中和成年小鼠中,平均轴突口径减小。定性分析还表明,DS 模型中 P16 时存在改变的髓鞘形成的微观特征,表现为髓鞘外褶和吞噬细胞内的髓鞘碎片。数据表明,在没有行为性癫痫发作的情况下,导致 P16 时向小口径轴突转变的因素在成年 Scn1a 杂合子 KO 胼胝体中持续存在。这项初步研究为未来的荟萃分析提供了基础,这将使我们能够对钠离子通道病对轴突结构的影响进行稳健的估计。我们提出,在 DS 中早期的治疗策略可以帮助最小化钠离子通道病的影响,超出明显癫痫发作的影响,从而实现更好的长期治疗效果。