Suppr超能文献

使用新型分数运动模型对阿尔茨海默病患者进行识别和分类

Identification and Classification of Alzheimer's Disease Patients Using Novel Fractional Motion Model.

作者信息

Du Lei, Xu Boyan, Zhao Zifang, Han Xiaowei, Gao Wenwen, Shi Sumin, Liu Xiuxiu, Chen Yue, Wang Yige, Sun Shilong, Zhang Lu, Gao Jiahong, Ma Guolin

机构信息

Department of Radiology, China-Japan Friendship Hospital, Beijing, China.

Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.

出版信息

Front Neurosci. 2020 Sep 17;14:767. doi: 10.3389/fnins.2020.00767. eCollection 2020.

Abstract

Most diffusion magnetic resonance imaging (dMRI) techniques use the mono-exponential model to describe the diffusion process of water in the brain. However, the observed dMRI signal decay curve deviates from the mono-exponential form. To solve this problem, the fractional motion (FM) model has been developed, which is regarded as a more appropriate model for describing the complex diffusion process in brain tissue. It is still unclear in the identification and classification of Alzheimer's disease (AD) patients using the FM model. The purpose of this study was to investigate the potential feasibility of FM model for differentiating AD patients from healthy controls and grading patients with AD. Twenty-four patients with AD and 11 healthy controls were included. The left and right hippocampus were selected as regions of interest (ROIs). The apparent diffusion coefficient (ADC) values and FM-related parameters, including the Noah exponent (α), the Hurst exponent (), and the memory parameter (=-1/), were calculated and compared between AD patients and healthy controls and between mild AD and moderate AD patients using a two-sample -test. The correlations between FM-related parameters α, , μ, and ADC values and the cognitive functions assessed by mini-mental state examination (MMSE) and Montreal cognitive assessment (MoCA) scales were investigated using Pearson partial correlation analysis in patients with AD. The receiver-operating characteristic analysis was used to assess the differential performance. We found that the FM-related parameter α could be used to distinguish AD patients from healthy controls ( < 0.05) with greater sensitivity and specificity (left ROI, 0.917 and 0.636; right ROI, 0.917 and 0.727) and grade AD patients ( < 0.05) showed higher sensitivity and specificity (right ROI, 0.917, 0.75). The α was found to be positively correlated with MMSE ( < 0.05) and MoCA ( < 0.05) scores in patients with AD, indicating that the α values in the bilateral hippocampus were a potential MRI-based biomarker of disease severity in AD patients. This novel diffusion model may be useful for further understanding neuropathologic changes in patients with AD.

摘要

大多数扩散磁共振成像(dMRI)技术使用单指数模型来描述大脑中水分子的扩散过程。然而,观察到的dMRI信号衰减曲线偏离了单指数形式。为了解决这个问题,分数运动(FM)模型被开发出来,它被认为是描述脑组织中复杂扩散过程的更合适模型。使用FM模型对阿尔茨海默病(AD)患者进行识别和分类仍不明确。本研究的目的是探讨FM模型区分AD患者与健康对照以及对AD患者进行分级的潜在可行性。纳入了24例AD患者和11名健康对照。选择左右海马作为感兴趣区域(ROI)。计算并比较了AD患者与健康对照之间以及轻度AD和中度AD患者之间的表观扩散系数(ADC)值和与FM相关的参数,包括诺亚指数(α)、赫斯特指数()和记忆参数(=-1/),采用双样本检验。在AD患者中,使用Pearson偏相关分析研究了与FM相关的参数α、、μ和ADC值与通过简易精神状态检查(MMSE)和蒙特利尔认知评估(MoCA)量表评估的认知功能之间的相关性。采用受试者工作特征分析来评估鉴别性能。我们发现,与FM相关的参数α可用于区分AD患者与健康对照(<0.05),具有更高的敏感性和特异性(左侧ROI,0.917和0.636;右侧ROI,0.917和0.727),并且对AD患者进行分级(<0.05)显示出更高的敏感性和特异性(右侧ROI,0.917,0.75)。发现α与AD患者的MMSE(<0.05)和MoCA(<0.05)评分呈正相关,表明双侧海马中的α值是AD患者疾病严重程度基于MRI的潜在生物标志物。这种新型扩散模型可能有助于进一步理解AD患者的神经病理变化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/358d/7533574/1a0535347f99/fnins-14-00767-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验