Suppr超能文献

一种基于列表模式有序子集最大期望值算法的单光子发射计算机断层扫描衰减与散射补偿方法。

A LIST-MODE OSEM-BASED ATTENUATION AND SCATTER COMPENSATION METHOD FOR SPECT.

作者信息

Rahman Md Ashequr, Laforest Richard, Jha Abhinav K

机构信息

Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA.

Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO, USA.

出版信息

Proc IEEE Int Symp Biomed Imaging. 2020 Apr;2020:646-650. doi: 10.1109/isbi45749.2020.9098333. Epub 2020 May 22.

Abstract

Reliable attenuation and scatter compensation (ASC) is a pre-requisite for quantification and beneficial for visual interpretation tasks in SPECT. In this paper, we develop a reconstruction method that uses the entire SPECT emission data, i.e. data in both the photopeak and scatter windows, acquired in list-mode format and including the energy attribute of the detected photon, to perform ASC. We implemented a GPU-based version of this method using an ordered subsets expectation maximization (OSEM) algorithm. The method was objectively evaluated using realistic simulation studies on the task of estimating uptake in the striatal regions of the brain in a 2-D dopamine transporter (DaT)-scan SPECT study. We observed that inclusion of data from the scatter window and using list-mode data yielded improved quantification compared to using data only from the photopeak window or using binned data. These results motivate further development of list-mode-based ASC methods that include scatter-window data for SPECT.

摘要

可靠的衰减和散射补偿(ASC)是SPECT中进行定量分析的前提条件,并且有利于视觉解释任务。在本文中,我们开发了一种重建方法,该方法使用以列表模式格式采集的整个SPECT发射数据,即光电峰和散射窗口中的数据,并包括检测到的光子的能量属性,来执行ASC。我们使用有序子集期望最大化(OSEM)算法实现了该方法的基于GPU的版本。在二维多巴胺转运体(DaT)扫描SPECT研究中,通过对估计大脑纹状体区域摄取量的任务进行逼真的模拟研究,对该方法进行了客观评估。我们观察到,与仅使用光电峰窗口的数据或使用分箱数据相比,纳入散射窗口的数据并使用列表模式数据可实现更好的定量分析。这些结果推动了基于列表模式的ASC方法的进一步发展,这些方法包括用于SPECT的散射窗口数据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/72c2/7561042/afdd3ce82a65/nihms-1632867-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验