Suppr超能文献

微波辅助双功能化氧化石墨烯超低负载量对立体光刻3D打印纳米复合材料的影响

On the Effect of Ultralow Loading of Microwave-Assisted Bifunctionalized Graphene Oxide in Stereolithographic 3D-Printed Nanocomposites.

作者信息

Ramírez-Soria Edgar-Homero, Bonilla-Cruz José, Flores-Amaro Monica Gabriela, García Vincent Joseph, Lara-Ceniceros Tania E, Longoria-Rodríguez Francisco E, Elizondo Perla, Advincula Rigoberto C

机构信息

Advanced Functional Materials & Nanotechnology Group, Centro de Investigación en Materiales Avanzados S. C. (CIMAV-Unidad Monterrey), Av. Alianza Norte 202, Autopista Monterrey-Aeropuerto Km 10, PIIT, C.P. 66628 Apodaca-Nuevo León, México.

Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León (UANL), AP 1864, 64570 Monterrey-Nuevo León, México.

出版信息

ACS Appl Mater Interfaces. 2020 Oct 28;12(43):49061-49072. doi: 10.1021/acsami.0c13702. Epub 2020 Oct 19.

Abstract

Surface functionalization of graphene oxide (GO) is one of the best ways to achieve homogeneous dispersions of GO within polymeric matrices and composites. Nonetheless, studies regarding how the level of GO functionalization affects the macroscopic properties of three-dimensional (3D) printed nanocomposites are still few. Furthermore, the bifunctionalization of GO with the NH/NH groups to obtain improved thermomechanical macroscopic properties at ultralow loads has not been reported. In this paper, fast and straightforward surface bifunctionalization of GO with a controlled ratio of NH/NH groups at low, medium, and high functionalization levels (AGOL, AGOM, and AGOH) in a one-step microwave-assisted synthesis is reported for the first time. The functionalization mechanism was disclosed, wherein three graft densities () were obtained. A plateau of maximum functionalization ( = 4.9 μmol/m = 2.9 molecules/nm) was reached, suggesting that full coverage of the GO surface is achievable. Also, an increase in the exfoliation of functionalized layers was obtained, ranging from = 8.6 Å up to = 15.8 Å. X-ray photoelectron spectroscopy (XPS) reveals the successful functionalization of GO, as well as an atomic relationship NH/NH of about 50/50% in all functionalized samples. Stereolithographic (SLA) 3D-printed nanocomposites (AGOL/R, AGOM/R, and AGOH/R) were obtained using ultralow loads (0.01 wt %) of each bifunctionalized material. This ultralow amount was sufficient to enhance thermal stability (up to 4 °C) and a significant increase in the glass transition temperature (93 °C ≤ ≤ 120 °C). Interestingly, we found that low and medium grafting density promotes a ductile material (ε > 5%); meanwhile, a high graft density produces brittle materials. Also, we observe that the toughness can be tuned as a function of the graft density (AGOH: 24 MPa, AGOM: 342 MPa, AGOL: 562 MPa) at ultralow loadings. The 3D-printed nanocomposites using GO with low graft density (AGOL) increase their tensile strain by 90% in comparison with the control sample (without filler). Finally, the underlying mechanisms were discussed to explain the findings.

摘要

氧化石墨烯(GO)的表面功能化是实现GO在聚合物基体和复合材料中均匀分散的最佳方法之一。尽管如此,关于GO功能化程度如何影响三维(3D)打印纳米复合材料宏观性能的研究仍然很少。此外,尚未有关于用NH/NH基团对GO进行双功能化以在超低负载下获得改善的热机械宏观性能的报道。本文首次报道了在一步微波辅助合成中,以低、中、高功能化水平(AGOL、AGOM和AGOH)可控比例的NH/NH基团对GO进行快速且直接的表面双功能化。揭示了功能化机制,其中获得了三种接枝密度()。达到了最大功能化的平稳期( = 4.9 μmol/m = 2.9分子/nm),表明可以实现GO表面的完全覆盖。此外,功能化层的剥离增加,范围从 = 8.6 Å到 = 15.8 Å。X射线光电子能谱(XPS)揭示了GO的成功功能化,以及所有功能化样品中约50/50%的原子比NH/NH。使用每种双功能化材料的超低负载量(0.01 wt%)获得了立体光刻(SLA)3D打印纳米复合材料(AGOL/R、AGOM/R和AGOH/R)。这种超低量足以提高热稳定性(高达4°C)并显著提高玻璃化转变温度(93°C≤≤120°C)。有趣的是,我们发现低和中等接枝密度促进形成韧性材料(ε>5%);同时,高接枝密度产生脆性材料。此外,我们观察到在超低负载下,韧性可以根据接枝密度进行调节(AGOH:24 MPa,AGOM:342 MPa,AGOL:562 MPa)。与对照样品(无填料)相比,使用低接枝密度GO(AGOL)的3D打印纳米复合材料的拉伸应变增加了90%。最后,讨论了潜在机制以解释这些发现。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验