文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

在发育过程中对转录进行定量剖析,为转录因子驱动的染色质可及性提供了证据。

Quantitative dissection of transcription in development yields evidence for transcription-factor-driven chromatin accessibility.

机构信息

Biophysics Graduate Group, University of California at Berkeley, Berkeley, United States.

Department of Physics, University of California at Berkeley, Berkeley, United States.

出版信息

Elife. 2020 Oct 19;9:e56429. doi: 10.7554/eLife.56429.


DOI:10.7554/eLife.56429
PMID:33074101
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7738189/
Abstract

Thermodynamic models of gene regulation can predict transcriptional regulation in bacteria, but in eukaryotes, chromatin accessibility and energy expenditure may call for a different framework. Here, we systematically tested the predictive power of models of DNA accessibility based on the Monod-Wyman-Changeux (MWC) model of allostery, which posits that chromatin fluctuates between accessible and inaccessible states. We dissected the regulatory dynamics of by the activator Bicoid and the pioneer-like transcription factor Zelda in living embryos and showed that no thermodynamic or non-equilibrium MWC model can recapitulate transcription. Therefore, we explored a model where DNA accessibility is not the result of thermal fluctuations but is catalyzed by Bicoid and Zelda, possibly through histone acetylation, and found that this model can predict dynamics. Thus, our theory-experiment dialogue uncovered potential molecular mechanisms of transcriptional regulatory dynamics, a key step toward reaching a predictive understanding of developmental decision-making.

摘要

基因调控的热力学模型可以预测细菌中的转录调控,但在真核生物中,染色质可及性和能量消耗可能需要一个不同的框架。在这里,我们系统地测试了基于变构的 Monod-Wyman-Changeux (MWC) 模型的 DNA 可及性模型的预测能力,该模型假设染色质在可及和不可及状态之间波动。我们在活体 胚胎中解析了激活因子 Bicoid 和先驱样转录因子 Zelda 对 的调控动态,并表明没有热力学或非平衡 MWC 模型可以再现 转录。因此,我们探索了一种模型,其中 DNA 可及性不是热波动的结果,而是由 Bicoid 和 Zelda 催化的,可能通过组蛋白乙酰化,并且发现该模型可以预测 动力学。因此,我们的理论-实验对话揭示了转录调控动力学的潜在分子机制,这是实现对发育决策进行预测性理解的关键一步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/934e/7738189/188f42738fad/elife-56429-resp-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/934e/7738189/1942dfe13526/elife-56429-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/934e/7738189/013b0f9f1645/elife-56429-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/934e/7738189/7e65512efe13/elife-56429-fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/934e/7738189/09475dce6328/elife-56429-fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/934e/7738189/fddfa46b130b/elife-56429-fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/934e/7738189/b7d770373004/elife-56429-fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/934e/7738189/fdacb17c7469/elife-56429-fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/934e/7738189/ac52e9220f7c/elife-56429-app1-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/934e/7738189/e7494814fa22/elife-56429-app1-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/934e/7738189/cc02e4d0dc34/elife-56429-app1-fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/934e/7738189/caa4b953715a/elife-56429-app1-fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/934e/7738189/85d6b0c9ce28/elife-56429-app1-fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/934e/7738189/7adbffd7028f/elife-56429-app1-fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/934e/7738189/398392c504e7/elife-56429-app1-fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/934e/7738189/569fefe47d99/elife-56429-app1-fig8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/934e/7738189/30fc1262db51/elife-56429-app1-fig9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/934e/7738189/d1b0bb064179/elife-56429-app1-fig10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/934e/7738189/c0e9204a25b0/elife-56429-app1-fig11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/934e/7738189/660fd8d670c4/elife-56429-app1-fig12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/934e/7738189/0a9dfbd4e3e2/elife-56429-app1-fig13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/934e/7738189/787f322ddfe2/elife-56429-app1-fig14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/934e/7738189/f7dd4fe1ee66/elife-56429-app1-fig15.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/934e/7738189/188f42738fad/elife-56429-resp-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/934e/7738189/1942dfe13526/elife-56429-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/934e/7738189/013b0f9f1645/elife-56429-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/934e/7738189/7e65512efe13/elife-56429-fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/934e/7738189/09475dce6328/elife-56429-fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/934e/7738189/fddfa46b130b/elife-56429-fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/934e/7738189/b7d770373004/elife-56429-fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/934e/7738189/fdacb17c7469/elife-56429-fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/934e/7738189/ac52e9220f7c/elife-56429-app1-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/934e/7738189/e7494814fa22/elife-56429-app1-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/934e/7738189/cc02e4d0dc34/elife-56429-app1-fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/934e/7738189/caa4b953715a/elife-56429-app1-fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/934e/7738189/85d6b0c9ce28/elife-56429-app1-fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/934e/7738189/7adbffd7028f/elife-56429-app1-fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/934e/7738189/398392c504e7/elife-56429-app1-fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/934e/7738189/569fefe47d99/elife-56429-app1-fig8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/934e/7738189/30fc1262db51/elife-56429-app1-fig9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/934e/7738189/d1b0bb064179/elife-56429-app1-fig10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/934e/7738189/c0e9204a25b0/elife-56429-app1-fig11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/934e/7738189/660fd8d670c4/elife-56429-app1-fig12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/934e/7738189/0a9dfbd4e3e2/elife-56429-app1-fig13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/934e/7738189/787f322ddfe2/elife-56429-app1-fig14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/934e/7738189/f7dd4fe1ee66/elife-56429-app1-fig15.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/934e/7738189/188f42738fad/elife-56429-resp-fig1.jpg

相似文献

[1]
Quantitative dissection of transcription in development yields evidence for transcription-factor-driven chromatin accessibility.

Elife. 2020-10-19

[2]
Gene expression noise in spatial patterning: hunchback promoter structure affects noise amplitude and distribution in Drosophila segmentation.

PLoS Comput Biol. 2011-2-3

[3]
Spatial bistability generates hunchback expression sharpness in the Drosophila embryo.

PLoS Comput Biol. 2008-9-26

[4]
GAF is essential for zygotic genome activation and chromatin accessibility in the early embryo.

Elife. 2021-3-15

[5]
The time to measure positional information: maternal hunchback is required for the synchrony of the Bicoid transcriptional response at the onset of zygotic transcription.

Development. 2010-8

[6]
Synthetic enhancer design by in silico compensatory evolution reveals flexibility and constraint in cis-regulation.

BMC Syst Biol. 2017-11-29

[7]
Bicoid occurrence and Bicoid-dependent hunchback regulation in lower cyclorrhaphan flies.

Evol Dev. 2008

[8]
Live imaging of bicoid-dependent transcription in Drosophila embryos.

Curr Biol. 2013-10-17

[9]
Dynamic multifactor hubs interact transiently with sites of active transcription in embryos.

Elife. 2018-12-27

[10]
Precision in a rush: Trade-offs between reproducibility and steepness of the hunchback expression pattern.

PLoS Comput Biol. 2018-10-11

引用本文的文献

[1]
Cell fate ratios are encoded by transcriptional dynamics in the Drosophila retina.

Curr Biol. 2025-6-23

[2]
Transcription-templated assembly of the nucleolus in the embryo.

Proc Natl Acad Sci U S A. 2025-6-3

[3]
Conservation of symmetry breaking at the level of chromatin accessibility between fly species with unrelated anterior determinants.

bioRxiv. 2025-1-14

[4]
Deciphering regulatory architectures of bacterial promoters from synthetic expression patterns.

PLoS Comput Biol. 2024-12-26

[5]
Bicoid-nucleosome competition sets a concentration threshold for transcription constrained by genome replication.

bioRxiv. 2024-12-12

[6]
Seeing with an extra sense.

Curr Biol. 2024-10-21

[7]
Energy Aware Technology Mapping of Genetic Logic Circuits.

bioRxiv. 2024-9-24

[8]
Energy Aware Technology Mapping of Genetic Logic Circuits.

ACS Synth Biol. 2024-10-18

[9]
EnhancerNet: a predictive model of cell identity dynamics through enhancer selection.

Development. 2024-10-1

[10]
Transcriptional silencing in Saccharomyces cerevisiae: known unknowns.

Epigenetics Chromatin. 2024-9-14

本文引用的文献

[1]
Kinetic sculpting of the seven stripes of the Drosophila gene.

Elife. 2020-12-10

[2]
Gene Regulation in and out of Equilibrium.

Annu Rev Biophys. 2020-5-6

[3]
Multimodal transcriptional control of pattern formation in embryonic development.

Proc Natl Acad Sci U S A. 2019-12-27

[4]
Evolutionary and functional insights into the mechanism underlying body-size-related adaptation of mammalian hemoglobin.

Elife. 2019-10-24

[5]
Predictive shifts in free energy couple mutations to their phenotypic consequences.

Proc Natl Acad Sci U S A. 2019-8-26

[6]
Dissecting the sharp response of a canonical developmental enhancer reveals multiple sources of cooperativity.

Elife. 2019-6-21

[7]
Figure 1 Theory Meets Figure 2 Experiments in the Study of Gene Expression.

Annu Rev Biophys. 2019-5-6

[8]
The Drosophila Pioneer Factor Zelda Modulates the Nuclear Microenvironment of a Dorsal Target Enhancer to Potentiate Transcriptional Output.

Curr Biol. 2019-4-11

[9]
Dynamic multifactor hubs interact transiently with sites of active transcription in embryos.

Elife. 2018-12-27

[10]
Temporal control of gene expression by the pioneer factor Zelda through transient interactions in hubs.

Nat Commun. 2018-12-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索