Department of Mathematics, Imperial College London, London, SW7 2AZ, UK.
Development. 2024 Oct 1;151(19). doi: 10.1242/dev.202997. Epub 2024 Oct 9.
Understanding how cell identity is encoded by the genome and acquired during differentiation is a central challenge in cell biology. I have developed a theoretical framework called EnhancerNet, which models the regulation of cell identity through the lens of transcription factor-enhancer interactions. I demonstrate that autoregulation in these interactions imposes a constraint on the model, resulting in simplified dynamics that can be parameterized from observed cell identities. Despite its simplicity, EnhancerNet recapitulates a broad range of experimental observations on cell identity dynamics, including enhancer selection, cell fate induction, hierarchical differentiation through multipotent progenitor states and direct reprogramming by transcription factor overexpression. The model makes specific quantitative predictions, reproducing known reprogramming recipes and the complex haematopoietic differentiation hierarchy without fitting unobserved parameters. EnhancerNet provides insights into how new cell types could evolve and highlights the functional importance of distal regulatory elements with dynamic chromatin in multicellular evolution.
理解基因组如何编码细胞身份以及在分化过程中获得细胞身份,是细胞生物学的一个核心挑战。我开发了一种名为 EnhancerNet 的理论框架,该框架通过转录因子-增强子相互作用的视角来模拟细胞身份的调控。我证明了这些相互作用中的自调节对模型施加了约束,导致简化的动力学,这些动力学可以从观察到的细胞身份中进行参数化。尽管它很简单,但 EnhancerNet 再现了细胞身份动力学的广泛实验观察结果,包括增强子选择、细胞命运诱导、通过多能祖细胞状态的层次分化以及转录因子过表达的直接重编程。该模型做出了具体的定量预测,再现了已知的重编程方案和复杂的造血分化层次结构,而无需拟合未观察到的参数。EnhancerNet 提供了关于新细胞类型如何进化的见解,并强调了具有动态染色质的远端调控元件在多细胞进化中的功能重要性。