Biomediq A/S, Copenhagen, DK; Cerebriu A/S, Copenhagen, DK; Department of Computer Science, University of Copenhagen, Copenhagen, DK; Department of Medical Physics and Biomedical Engineering, University College London, London, UK.
Biomediq A/S, Copenhagen, DK; Cerebriu A/S, Copenhagen, DK; Department of Computer Science, University of Copenhagen, Copenhagen, DK.
Neuroimage. 2021 Jan 15;225:117460. doi: 10.1016/j.neuroimage.2020.117460. Epub 2020 Oct 16.
Quantitative characterization of disease progression using longitudinal data can provide long-term predictions for the pathological stages of individuals. This work studies the robust modeling of Alzheimer's disease progression using parametric methods. The proposed method linearly maps the individual's age to a disease progression score (DPS) and jointly fits constrained generalized logistic functions to the longitudinal dynamics of biomarkers as functions of the DPS using M-estimation. Robustness of the estimates is quantified using bootstrapping via Monte Carlo resampling, and the estimated inflection points of the fitted functions are used to temporally order the modeled biomarkers in the disease course. Kernel density estimation is applied to the obtained DPSs for clinical status classification using a Bayesian classifier. Different M-estimators and logistic functions, including a novel type proposed in this study, called modified Stannard, are evaluated on the data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) for robust modeling of volumetric magnetic resonance imaging (MRI) and positron emission tomography (PET) biomarkers, cerebrospinal fluid (CSF) measurements, as well as cognitive tests. The results show that the modified Stannard function fitted using the logistic loss achieves the best modeling performance with an average normalized mean absolute error (NMAE) of 0.991 across all biomarkers and bootstraps. Applied to the ADNI test set, this model achieves a multiclass area under the ROC curve (AUC) of 0.934 in clinical status classification. The obtained results for the proposed model outperform almost all state-of-the-art results in predicting biomarker values and classifying clinical status. Finally, the experiments show that the proposed model, trained using abundant ADNI data, generalizes well to data from the National Alzheimer's Coordinating Center (NACC) with an average NMAE of 1.182 and a multiclass AUC of 0.929.
使用纵向数据对疾病进展进行定量描述可以为个体的病理阶段提供长期预测。本研究使用参数方法研究阿尔茨海默病进展的稳健建模。该方法将个体的年龄线性映射到疾病进展评分(DPS),并使用 M 估计将约束广义逻辑函数联合拟合为 DPS 的纵向生物标志物动力学。通过蒙特卡罗重采样的引导来量化估计的稳健性,并使用拟合函数的估计拐点来对疾病过程中建模的生物标志物进行时间排序。核密度估计应用于从阿尔茨海默病神经影像学倡议(ADNI)获得的 DPS,使用贝叶斯分类器进行临床状态分类。评估了不同的 M 估计量和逻辑函数,包括本研究提出的一种新型函数,称为改良 Stannard,用于稳健建模容积磁共振成像(MRI)和正电子发射断层扫描(PET)生物标志物、脑脊液(CSF)测量以及认知测试。结果表明,使用逻辑损失拟合的改良 Stannard 函数在所有生物标志物和引导中实现了最佳建模性能,平均归一化平均绝对误差(NMAE)为 0.991。应用于 ADNI 测试集,该模型在临床状态分类中的多类 AUC 为 0.934。所提出模型的结果在预测生物标志物值和分类临床状态方面几乎优于所有最先进的结果。最后,实验表明,使用大量 ADNI 数据训练的所提出的模型可以很好地推广到国家阿尔茨海默病协调中心(NACC)的数据,平均 NMAE 为 1.182,多类 AUC 为 0.929。