Suppr超能文献

源自多糖的介孔碳及其在锂氧电池中的应用。

Mesoporous Carbons from Polysaccharides and Their Use in Li-O Batteries.

作者信息

Uriburu-Gray María, Pinar-Serrano Aránzazu, Cavus Gokhan, Knipping Etienne, Aucher Christophe, Conesa-Cabeza Aleix, Satti Amro, Amantia David, Martínez-Crespiera Sandra

机构信息

LEITAT Technological Centre, Applied Chemistry and Materials Department, C/Pallars, 185, 08005 Barcelona, Spain.

LEITAT Technological Centre, Energy and Engineering Department, C/de la Innovació, 2, 08225 Terrassa (Barcelona), Spain.

出版信息

Nanomaterials (Basel). 2020 Oct 15;10(10):2036. doi: 10.3390/nano10102036.

Abstract

Previous studies have demonstrated that the mesoporosity of carbon material obtained by the Starbon process from starch-formed by amylose and amylopectin can be tuned by controlling this ratio (the higher the amylose, the higher the mesoporosity). This study shows that starch type can also be an important parameter to control this mesoporosity. Carbons with controlled mesoporosity (V from 0.1-0.7 cm/g) have been produced by the pre-mixing of different starches using an ionic liquid (IL) followed by a modified Starbon process. The results show that the use of starch from corn and maize (commercially available Hylon VII with maize, respectively) is the better combination to increase the mesopore volume. Moreover, "low-cost" mesoporous carbons have been obtained by the direct carbonization of the pre-treated starch mixtures with the IL. In all cases, the IL can be recovered and reused, as demonstrated by its recycling up to three times. Furthermore, and as a comparison, chitosan has been also used as a precursor to obtain N-doped mesoporous carbons (5.5 wt% N) with moderate mesoporosity (V = 0.43 cm/g). The different mesoporous carbons have been tested as cathode components in Li-O batteries and it is shown that a higher carbon mesoporosity, produced from starch precursor, or the N-doping, produced from chitosan precursor, increase the final battery cell performance (specific capacity and cycling).

摘要

先前的研究表明,通过斯塔本工艺由直链淀粉和支链淀粉形成的淀粉制得的碳材料的介孔率可通过控制该比例来调节(直链淀粉含量越高,介孔率越高)。本研究表明,淀粉类型也是控制这种介孔率的一个重要参数。通过使用离子液体(IL)预混合不同淀粉,然后采用改进的斯塔本工艺,制备出了介孔率可控(V为0.1 - 0.7 cm/g)的碳材料。结果表明,使用玉米淀粉(分别为市售含玉米的海隆VII)是提高介孔体积的更好组合。此外,通过将预处理的淀粉混合物与离子液体直接碳化,获得了“低成本”的介孔碳。在所有情况下,离子液体均可回收再利用,其循环使用高达三次就证明了这一点。此外,作为对比,壳聚糖也被用作前驱体来制备具有适度介孔率(V = 0.43 cm/g)的氮掺杂介孔碳(氮含量为5.5 wt%)。已对不同的介孔碳作为锂氧电池的阴极组件进行了测试,结果表明,由淀粉前驱体制备的较高碳介孔率或由壳聚糖前驱体制备的氮掺杂可提高最终电池单元的性能(比容量和循环性能)。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验