Graduate School of Medicine, Engineering and Agricultural Sciences, University of Yamanashi, Kofu, Yamanashi 400-8510, Japan.
Iwata Chemical Co.Ltd., Iwata, Shizuoka 438-0078, Japan.
Int J Environ Res Public Health. 2020 Oct 15;17(20):7514. doi: 10.3390/ijerph17207514.
Biogasification by methane fermentation is an important and effective way to utilize beverage wastes. Beverage wastes are good feedstocks for methane fermentation because of their richness in sugars and proteins, although overacidification and inhibition of methane production caused by high substrate loading often become problematic. This study investigated changes in microbial communities in the overacidification state of the thermophilic methane fermentation process with beverage waste by establishing a simulated batch culture. We assessed 20 mL-scale batch cultures using a simulant beverage waste mixture (SBWM) with different amounts of addition; high cumulative methane production was achieved by adding 5 mL of SBWM (11358 mg-chemical oxygen demand-COD/L of organic loading), and overacidification was observed by adding 10 mL of SBWM (22715 mg-COD/L of organic loading). The results of 16S rRNA amplicon sequence analysis using nanopore sequencer suggested that Coprothermobacter proteolyticus, Defluviitoga tunisiensis, Acetomicrobium mobile, and Thermosediminibacter oceani were predominantly involved in hydrolysis/acidogenesis/acetogenesis processes, whereas Methanothrix soehngenii was the major acetotrophic methane producer. A comparison of microbial population between the methane-producing cultures and overacidification cultures revealed characteristic population changes especially in some minor species under 0.2% of population. We concluded that careful monitoring of population changes of the minor species is a potential indicator for prediction of overacidification.
沼气发酵是利用饮料废物的一种重要且有效的方法。饮料废物因其富含糖和蛋白质而成为沼气发酵的良好原料,尽管由于高底物负荷而导致过度酸化和甲烷生成抑制常常成为问题。本研究通过建立模拟批式培养来研究在高温甲烷发酵过程中饮料废物过度酸化状态下微生物群落的变化。我们使用不同添加量的模拟饮料废物混合物(SBWM)评估了 20 毫升规模的批式培养;通过添加 5 毫升 SBWM(有机负荷 11358 毫克化学需氧量-COD/L)可实现高累积甲烷产量,而通过添加 10 毫升 SBWM(有机负荷 22715 毫克 COD/L)则观察到过度酸化。使用纳米孔测序仪的 16S rRNA 扩增子序列分析结果表明,Cop ro thermobacter proteolyticus、Defluviitoga tunisiensis、Acetomicrobium mobile 和 Thermosediminibacter oceani 主要参与水解/产酸/产乙酸过程,而 Methanothrix soehngenii 是主要的乙酸营养型甲烷生成菌。产甲烷培养物和过度酸化培养物的微生物种群比较显示,特别是在种群 0.2%以下的一些次要物种中,种群变化具有特征性。我们得出结论,仔细监测次要物种的种群变化是预测过度酸化的潜在指标。