Chen Qian, Jiang Weidong, Fan Guangyin
College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China.
Dalton Trans. 2020 Nov 3;49(42):14914-14920. doi: 10.1039/d0dt02594a.
The development of Pt nanocatalysts for the selective hydrogenation of nitroaromatic compounds to the corresponding amines is of great significance to solve the drawbacks associated with a low reserve of Pt. Herein, we develop a protocol for the preparation of a Pt/titanium carbide-based MXene heterostructure for the selective reduction of nitroaromatic compounds. In the heterostructure, well-defined and nano-sized metallic Pt crystallites are uniformly decorated on Ti3C2Tx nanosheets using a mild reducing agent of ammonia borane without additional stabilizing agents. The selective hydrogenation of p-chloronitrobenzene (p-CNB) to p-chloroaniline (p-CAN) was employed as a model reaction to investigate the catalytic performance of the as-synthesized heterostructure, denoted as Pt/Ti3C2Tx-D-AB. Notably, this catalyst can catalyze the complete conversion of p-CNB to p-CAN with 99.5% selectivity, superior to that of Pt/Ti3C2Tx-D-SB synthesized with sodium borohydride. The high performance of the present catalytic system can be ascribed to the well-dispersed Pt nanoparticles, the abundant surface electron-efficient Pt(0), and the synergistic catalysis between Pt/Ti3C2Tx-D-AB and water. This catalyst also shows generality toward the selective hydrogenation of a series of nitroaromatic compounds to the corresponding amines with high efficiency. The present study provides a strategy to synthesize efficient catalysts for catalytic applications.
开发用于将硝基芳烃化合物选择性氢化为相应胺类的铂纳米催化剂,对于解决铂储量低相关的缺点具有重要意义。在此,我们开发了一种制备基于铂/碳化钛的MXene异质结构的方法,用于选择性还原硝基芳烃化合物。在该异质结构中,使用温和的硼氢化氨还原剂,在不添加额外稳定剂的情况下,将明确且纳米尺寸的金属铂微晶均匀地装饰在Ti3C2Tx纳米片上。以对氯硝基苯(p-CNB)选择性氢化为对氯苯胺(p-CAN)作为模型反应,研究合成的异质结构(记为Pt/Ti3C2Tx-D-AB)的催化性能。值得注意的是,该催化剂能够催化p-CNB完全转化为p-CAN,选择性达99.5%,优于用硼氢化钠合成的Pt/Ti3C2Tx-D-SB。本催化体系的高性能可归因于分散良好的铂纳米颗粒、丰富的表面电子高效铂(0)以及Pt/Ti3C2Tx-D-AB与水之间的协同催化作用。该催化剂对一系列硝基芳烃化合物选择性氢化为相应胺类也具有高效通用性。本研究提供了一种合成用于催化应用的高效催化剂的策略。