Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, China.
Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, China.
ACS Appl Mater Interfaces. 2020 Nov 4;12(44):49452-49463. doi: 10.1021/acsami.0c15754. Epub 2020 Oct 20.
Conventionally, surface-enhanced Raman spectroscopy (SERS)-active materials mainly include nanosized noble metals, semiconductors, or the complex of both, most of which are limited in practical applications because of their symbiotic materials, complex and difficult to control fabrication processes, and reuse and sampling challenges. To address these issues, novel SERS substrates have been developed in this study by anchoring zeolitic imidazolate framework-67 (ZIF-67) and derivatives of ZIF-67 to cotton fabric. The designed SERS substrates show extraordinary flexibility, an excellent enhancement factor, and reusable performance. By adjusting the lowest unoccupied molecular orbital and highest occupied molecular orbital of ZIF-67 through a doping process with different metal ions, the substrates exhibit a high enhancement factor of 6.07 × 10 and a low limit of detection of 10 M, as well as reusability resulting from photocatalysis. The enhancement process is studied based on charge transfer resonance, interband transition resonance, ground state charge transfer, and the light coupling effect. The results contribute to the approaches in designing SERS substrates by using ZIFs as unique SERS-active materials, and provide new insights into the development of novel SERS-active materials, along with promoting the use of SERS detection in the real world by improving the flexibility of substrates.
传统上,表面增强拉曼光谱(SERS)活性材料主要包括纳米尺寸的贵金属、半导体或两者的复合物,由于共生材料、复杂且难以控制的制造工艺以及再利用和采样挑战,它们在实际应用中受到限制。为了解决这些问题,本研究通过将沸石咪唑酯骨架-67(ZIF-67)及其衍生物锚定在棉织物上,开发了新型 SERS 基底。设计的 SERS 基底具有非凡的灵活性、优异的增强因子和可重复使用的性能。通过用不同金属离子进行掺杂来调整 ZIF-67 的最低未占据分子轨道和最高占据分子轨道,基底表现出高的增强因子 6.07×10 和低的检测限 10M,以及光催化作用的可重复使用性。增强过程是基于电荷转移共振、带间跃迁共振、基态电荷转移和光耦合效应来研究的。这些结果有助于通过将 ZIF 用作独特的 SERS 活性材料来设计 SERS 基底的方法,并为新型 SERS 活性材料的发展提供了新的见解,同时通过提高基底的灵活性来促进 SERS 检测在现实世界中的应用。