Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, China.
University of Chinese Academy of Sciences, Beijing 100049, China.
Environ Sci Technol. 2020 Nov 3;54(21):13709-13718. doi: 10.1021/acs.est.0c04044. Epub 2020 Oct 20.
Lakes play an important role in the global carbon cycle; however, there are still large uncertainties in the estimation of global lake carbon emission due to the limitations in conducting field surveys at large geographic scales. Using long-term Moderate-Resolution Imaging Spectroradiometer (MODIS) imagery and field observation data in eutrophic Lake Taihu, we developed a novel approach to estimate the concentration of dissolved carbon dioxide (CO) in lakes. Based on the MODIS-derived chlorophyll- concentration, lake surface temperature, diffuse attenuation coefficient of photosynthetically active radiation, and photosynthetically active radiation, a spatially explicit CO model was developed using multivariate quadratic polynomial regression (coefficient of determination () = 0.84, root-mean-square error (RMSE) = 11.81 μmol L, unbiased percent difference (UPD) = 22.46%). Monte Carlo simulations indicated that the model is stable with relatively small deviations in CO estimates caused by input variables (UPD = 26.14%). MODIS data from 2003 to 2018 showed a significant declining trend (0.42 μmol L yr, < 0.05) in the annual mean CO. This was associated with a complex balance between the increasing algae biomass and decreasing external inputs of inorganic carbon, nutrients, and organic matter. The high spatiotemporal variabilities in CO were attributed to river inputs and seasonal changes in temperature and algae biomass. The study shows that satellite remote sensing can play an important role in the field of inland water carbon cycling, providing timely much-needed insights into the drivers of the spatial and temporal changes in dissolved CO concentrations in inland waters.
湖泊在全球碳循环中起着重要作用;然而,由于在大地理尺度上进行实地调查的限制,全球湖泊碳排放量的估算仍然存在很大的不确定性。本研究利用长期中等分辨率成像光谱仪(MODIS)图像和富营养化太湖的野外观测数据,开发了一种新的方法来估算湖泊中溶解二氧化碳(CO)的浓度。基于 MODIS 衍生的叶绿素浓度、湖表面温度、光活性辐射漫衰减系数和光活性辐射,利用多元二次多项式回归(决定系数()= 0.84,均方根误差(RMSE)= 11.81 μmol L,无偏百分比差异(UPD)= 22.46%)建立了一个空间显式的 CO 模型。蒙特卡罗模拟表明,该模型具有较好的稳定性,输入变量引起的 CO 估算偏差相对较小(UPD = 26.14%)。2003 年至 2018 年的 MODIS 数据显示,年平均 CO 呈显著下降趋势(0.42 μmol L yr,<0.05)。这与藻类生物量增加和无机碳、营养物质和有机物质外部输入减少之间的复杂平衡有关。CO 的高时空变异性归因于河流输入以及温度和藻类生物量的季节性变化。本研究表明,卫星遥感可以在内陆水碳循环领域发挥重要作用,为内陆水溶解 CO 浓度时空变化的驱动因素提供及时的急需的见解。