Suppr超能文献

利用常规收集的医疗保健利用数据预测开处阿片类药物患者的药物过量情况。

Predicting overdose among individuals prescribed opioids using routinely collected healthcare utilization data.

机构信息

Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States of America.

Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, United States of America.

出版信息

PLoS One. 2020 Oct 20;15(10):e0241083. doi: 10.1371/journal.pone.0241083. eCollection 2020.

Abstract

INTRODUCTION

With increasing rates of opioid overdoses in the US, a surveillance tool to identify high-risk patients may help facilitate early intervention.

OBJECTIVE

To develop an algorithm to predict overdose using routinely-collected healthcare databases.

METHODS

Within a US commercial claims database (2011-2015), patients with ≥1 opioid prescription were identified. Patients were randomly allocated into the training (50%), validation (25%), or test set (25%). For each month of follow-up, pooled logistic regression was used to predict the odds of incident overdose in the next month based on patient history from the preceding 3-6 months (time-updated), using elastic net for variable selection. As secondary analyses, we explored whether using simpler models (few predictors, baseline only) or different analytic methods (random forest, traditional regression) influenced performance.

RESULTS

We identified 5,293,880 individuals prescribed opioids; 2,682 patients (0.05%) had an overdose during follow-up (mean: 17.1 months). On average, patients who overdosed were younger and had more diagnoses and prescriptions. The elastic net model achieved good performance (c-statistic 0.887, 95% CI 0.872-0.902; sensitivity 80.2, specificity 80.1, PPV 0.21, NPV 99.9 at optimal cutpoint). It outperformed simpler models based on few predictors (c-statistic 0.825, 95% CI 0.808-0.843) and baseline predictors only (c-statistic 0.806, 95% CI 0.787-0.26). Different analytic techniques did not substantially influence performance. In the final algorithm based on elastic net, the strongest predictors were age 18-25 years (OR: 2.21), prior suicide attempt (OR: 3.68), opioid dependence (OR: 3.14).

CONCLUSIONS

We demonstrate that sophisticated algorithms using healthcare databases can be predictive of overdose, creating opportunities for active monitoring and early intervention.

摘要

简介

随着美国阿片类药物过量率的上升,一种用于识别高危患者的监测工具可能有助于促进早期干预。

目的

开发一种使用常规收集的医疗保健数据库预测药物过量的算法。

方法

在一个美国商业索赔数据库(2011-2015 年)中,确定了至少有 1 份阿片类药物处方的患者。患者被随机分配到训练集(50%)、验证集(25%)或测试集(25%)。对于每个随访月,使用基于前 3-6 个月(时间更新)患者病史的汇总逻辑回归,根据弹性网络进行变量选择,预测下一个月药物过量的可能性。作为次要分析,我们探讨了使用更简单的模型(少量预测因子,仅基线)或不同的分析方法(随机森林,传统回归)是否会影响性能。

结果

我们确定了 5293880 名开处阿片类药物的患者;在随访期间,有 2682 名患者(0.05%)发生了药物过量(平均:17.1 个月)。平均而言,药物过量的患者更年轻,有更多的诊断和处方。弹性网络模型的性能良好(C 统计量为 0.887,95%置信区间为 0.872-0.902;灵敏度为 80.2%,特异性为 80.1%,阳性预测值为 0.21,阴性预测值为 99.9%,最佳切点)。它优于基于少量预测因子(C 统计量为 0.825,95%置信区间为 0.808-0.843)和仅基线预测因子(C 统计量为 0.806,95%置信区间为 0.787-0.26)的简单模型。不同的分析技术并没有显著影响性能。在最终基于弹性网络的算法中,最强的预测因子是年龄 18-25 岁(OR:2.21)、先前自杀企图(OR:3.68)和阿片类药物依赖(OR:3.14)。

结论

我们证明了使用医疗保健数据库的复杂算法可以预测药物过量,为主动监测和早期干预创造了机会。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d58/7575098/322485eb7381/pone.0241083.g001.jpg

相似文献

1
Predicting overdose among individuals prescribed opioids using routinely collected healthcare utilization data.
PLoS One. 2020 Oct 20;15(10):e0241083. doi: 10.1371/journal.pone.0241083. eCollection 2020.
3
Controlled Substance Prescribing Patterns--Prescription Behavior Surveillance System, Eight States, 2013.
MMWR Surveill Summ. 2015 Oct 16;64(9):1-14. doi: 10.15585/mmwr.ss6409a1.
4
Association of Opioids Prescribed to Family Members With Opioid Overdose Among Adolescents and Young Adults.
JAMA Netw Open. 2020 Mar 2;3(3):e201018. doi: 10.1001/jamanetworkopen.2020.1018.
5
Opioid prescribing history prior to heroin overdose among commercially insured adults.
Drug Alcohol Depend. 2020 Jul 1;212:108061. doi: 10.1016/j.drugalcdep.2020.108061. Epub 2020 May 12.
6
Association of Opioid Prescribing Patterns With Prescription Opioid Overdose in Adolescents and Young Adults.
JAMA Pediatr. 2020 Feb 1;174(2):141-148. doi: 10.1001/jamapediatrics.2019.4878.
7
Association between opioid prescribing patterns and opioid overdose-related deaths.
JAMA. 2011 Apr 6;305(13):1315-21. doi: 10.1001/jama.2011.370.
8
An Examination of Claims-based Predictors of Overdose from a Large Medicaid Program.
Med Care. 2017 Mar;55(3):291-298. doi: 10.1097/MLR.0000000000000676.

引用本文的文献

1
A systematic review of machine learning applications in predicting opioid associated adverse events.
NPJ Digit Med. 2025 Jan 16;8(1):30. doi: 10.1038/s41746-024-01312-4.
3
Exploring trends and autonomy levels of adaptive business intelligence in healthcare: A systematic review.
PLoS One. 2024 May 10;19(5):e0302697. doi: 10.1371/journal.pone.0302697. eCollection 2024.
4
Predictive Models to Assess Risk of Persistent Opioid Use, Opioid Use Disorder, and Overdose.
J Addict Med. 2024;18(3):218-239. doi: 10.1097/ADM.0000000000001276. Epub 2024 Apr 9.
6
Outcome class imbalance and rare events: An underappreciated complication for overdose risk prediction modeling.
Addiction. 2023 Jun;118(6):1167-1176. doi: 10.1111/add.16133. Epub 2023 Feb 6.
8
Identifying Predictors of Opioid Overdose Death at a Neighborhood Level With Machine Learning.
Am J Epidemiol. 2022 Feb 19;191(3):526-533. doi: 10.1093/aje/kwab279.
9
Assessing opioid overdose risk: a review of clinical prediction models utilizing patient-level data.
Transl Res. 2021 Aug;234:74-87. doi: 10.1016/j.trsl.2021.03.012. Epub 2021 Mar 21.

本文引用的文献

2
Trends in Intentional and Unintentional Opioid Overdose Deaths in the United States, 2000-2017.
JAMA. 2019 Dec 17;322(23):2340-2342. doi: 10.1001/jama.2019.16566.
4
Touchpoints - Opportunities to predict and prevent opioid overdose: A cohort study.
Drug Alcohol Depend. 2019 Nov 1;204:107537. doi: 10.1016/j.drugalcdep.2019.06.039. Epub 2019 Sep 3.
6
The Burden of Opioid-Related Mortality in the United States.
JAMA Netw Open. 2018 Jun 1;1(2):e180217. doi: 10.1001/jamanetworkopen.2018.0217.
7
Drug and Opioid-Involved Overdose Deaths - United States, 2013-2017.
MMWR Morb Mortal Wkly Rep. 2018 Jan 4;67(5152):1419-1427. doi: 10.15585/mmwr.mm675152e1.
8
Using prescription claims to detect aberrant behaviors with opioids: comparison and validation of 5 algorithms.
Pharmacoepidemiol Drug Saf. 2019 Jan;28(1):62-69. doi: 10.1002/pds.4443. Epub 2018 Apr 24.
9
Overdose Deaths Involving Opioids, Cocaine, and Psychostimulants - United States, 2015-2016.
MMWR Morb Mortal Wkly Rep. 2018 Mar 30;67(12):349-358. doi: 10.15585/mmwr.mm6712a1.
10
Quantifying the Epidemic of Prescription Opioid Overdose Deaths.
Am J Public Health. 2018 Apr;108(4):500-502. doi: 10.2105/AJPH.2017.304265.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验