Suppr超能文献

机器学习在预测阿片类药物相关不良事件中的应用的系统评价。

A systematic review of machine learning applications in predicting opioid associated adverse events.

作者信息

Ramírez Medina Carlos R, Benitez-Aurioles Jose, Jenkins David A, Jani Meghna

机构信息

Centre for Epidemiology Versus Arthritis, Centre for Musculoskeletal Research, Division of Musculoskeletal and Dermatological Sciences, The University of Manchester, Manchester, United Kingdom.

Division of Informatics, Imaging and Data Science, The University of Manchester, Manchester, United Kingdom.

出版信息

NPJ Digit Med. 2025 Jan 16;8(1):30. doi: 10.1038/s41746-024-01312-4.

Abstract

Machine learning has increasingly been applied to predict opioid-related harms due to its ability to handle complex interactions and generating actionable predictions. This review evaluated the types and quality of ML methods in opioid safety research, identifying 44 studies using supervised ML through searches of Ovid MEDLINE, PubMed and SCOPUS databases. Commonly predicted outcomes included postoperative opioid use (n = 15, 34%) opioid overdose (n = 8, 18%), opioid use disorder (n = 8, 18%) and persistent opioid use (n = 5, 11%) with varying definitions. Most studies (96%) originated from North America, with only 7% reporting external validation. Model performance was moderate to strong, but calibration was often missing (41%). Transparent reporting of model development was often incomplete, with key aspects such as calibration, imbalance correction, and handling of missing data absent. Infrequent external validation limited the generalizability of current models. Addressing these aspects is critical for transparency, interpretability, and future implementation of the results.

摘要

由于机器学习能够处理复杂的相互作用并生成可采取行动的预测结果,它在预测阿片类药物相关危害方面的应用越来越广泛。本综述评估了阿片类药物安全性研究中机器学习方法的类型和质量,通过检索Ovid MEDLINE、PubMed和SCOPUS数据库,确定了44项使用监督式机器学习的研究。常见的预测结果包括术后阿片类药物使用(n = 15,34%)、阿片类药物过量(n = 8,18%)、阿片类药物使用障碍(n = 8,18%)和持续阿片类药物使用(n = 5,11%),其定义各不相同。大多数研究(96%)来自北美,只有7%报告了外部验证。模型性能为中等至较强,但校准通常缺失(41%)。模型开发的透明报告往往不完整,缺少校准、不平衡校正和缺失数据处理等关键方面。外部验证不频繁限制了当前模型的可推广性。解决这些方面对于结果的透明度、可解释性和未来实施至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f8a/11739375/f0e4a702ad41/41746_2024_1312_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验