Suppr超能文献

肺泡表面活性剂囊泡诱导的肺表面活性剂膜的结构变化。

Structural Changes in Films of Pulmonary Surfactant Induced by Surfactant Vesicles.

机构信息

Department of Physics, Center for Molecular Study of Condensed Soft Matter (μCoSM), Pritzker Institute of Biomedical Science and Engineering, Illinois Institute of Technology, Chicago, Illinois 60616, United States.

X-ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States.

出版信息

Langmuir. 2020 Nov 17;36(45):13439-13447. doi: 10.1021/acs.langmuir.0c01813. Epub 2020 Oct 20.

Abstract

When compressed by the shrinking alveolar surface area during exhalation, films of pulmonary surfactant reduce surface tension to levels at which surfactant monolayers collapse from the surface . Vesicles of pulmonary surfactant added below these monolayers slow collapse. X-ray scattering here determined the structural changes induced by the added vesicles. Grazing incidence X-ray diffraction on monolayers of extracted calf surfactant detected an ordered phase. Mixtures of dipalmitoyl phosphatidylcholine and cholesterol, but not the phospholipid alone, mimic that structure. At concentrations that stabilize the monolayers, vesicles in the subphase had no effect on the unit cell, and X-ray reflection showed that the film remained monomolecular. The added vesicles, however, produced a concentration-dependent increase in the diffracted intensity. These results suggest that the enhanced resistance to collapse results from enlargement by the additional material of the ordered phase.

摘要

在呼气时,肺泡表面积缩小会对肺表面活性物质产生压缩,使其降低表面张力,达到使表面活性物质单层从表面坍塌的水平。添加到这些单层下面的肺表面活性物质小泡会减缓坍塌。此处的 X 射线散射确定了添加的小泡所引起的结构变化。对提取的小牛肺表面活性剂单层进行掠入射 X 射线衍射检测到有序相。二棕榈酰磷脂酰胆碱和胆固醇的混合物,但不是单独的磷脂,可以模拟该结构。在稳定单层的浓度下,亚相中的小泡对单位晶胞没有影响,X 射线反射表明该膜仍然是单分子的。然而,添加的小泡会导致衍射强度的浓度依赖性增加。这些结果表明,增强的抗坍塌能力是由于额外物质使有序相扩大所致。

相似文献

1
Structural Changes in Films of Pulmonary Surfactant Induced by Surfactant Vesicles.
Langmuir. 2020 Nov 17;36(45):13439-13447. doi: 10.1021/acs.langmuir.0c01813. Epub 2020 Oct 20.
3
Effects of cholesterol on the structure and collapse of DPPC monolayers.
Biophys J. 2022 Sep 20;121(18):3533-3541. doi: 10.1016/j.bpj.2022.07.007. Epub 2022 Jul 14.
4
Suppression of L/L Phase Coexistence in the Lipids of Pulmonary Surfactant.
Biophys J. 2021 Jan 19;120(2):243-253. doi: 10.1016/j.bpj.2020.12.008. Epub 2020 Dec 19.
7
The Equilibrium Spreading Tension of Pulmonary Surfactant.
Langmuir. 2015 Dec 8;31(48):13063-7. doi: 10.1021/acs.langmuir.5b03094. Epub 2015 Nov 23.
8
Thermodynamic and structural characterization of a mixed perfluorocarbon-phospholipid ternary monolayer surfactant system.
J Colloid Interface Sci. 2012 Feb 15;368(1):356-65. doi: 10.1016/j.jcis.2011.10.012. Epub 2011 Oct 12.
9
Liquid-crystalline collapse of pulmonary surfactant monolayers.
Biophys J. 2003 Jun;84(6):3792-806. doi: 10.1016/S0006-3495(03)75107-8.

引用本文的文献

2
Surfactant protein SP-B: one ring to rule the molecular and biophysical mechanisms of the pulmonary surfactant system.
Biophys Rev. 2025 Mar 18;17(2):653-666. doi: 10.1007/s12551-025-01285-y. eCollection 2025 Apr.
3
Comparative biophysical study of clinical surfactants using constrained drop surfactometry.
Am J Physiol Lung Cell Mol Physiol. 2024 Oct 1;327(4):L535-L546. doi: 10.1152/ajplung.00058.2024. Epub 2024 Aug 19.
4
The biophysical function of pulmonary surfactant.
Biophys J. 2024 Jun 18;123(12):1519-1530. doi: 10.1016/j.bpj.2024.04.021. Epub 2024 Apr 25.
5
Suppression of L/L Phase Coexistence in the Lipids of Pulmonary Surfactant.
Biophys J. 2021 Jan 19;120(2):243-253. doi: 10.1016/j.bpj.2020.12.008. Epub 2020 Dec 19.

本文引用的文献

1
Membrane Structural Remodeling Increases Resistance to Antimicrobial Peptide LL-37.
ACS Infect Dis. 2019 Jul 12;5(7):1214-1222. doi: 10.1021/acsinfecdis.9b00066. Epub 2019 May 24.
2
Peptoid drug discovery and optimization via surface X-ray scattering.
Biopolymers. 2019 Jun;110(6):e23274. doi: 10.1002/bip.23274. Epub 2019 Mar 20.
3
The L Phase of Pulmonary Surfactant.
Langmuir. 2018 Jun 5;34(22):6601-6611. doi: 10.1021/acs.langmuir.8b00460. Epub 2018 May 21.
4
Hydrophobic interactions modulate antimicrobial peptoid selectivity towards anionic lipid membranes.
Biochim Biophys Acta Biomembr. 2018 Jun;1860(6):1414-1423. doi: 10.1016/j.bbamem.2018.03.021. Epub 2018 Apr 3.
5
Interfacial curvature effects on the monolayer morphology and dynamics of a clinical lung surfactant.
Proc Natl Acad Sci U S A. 2018 Jan 9;115(2):E134-E143. doi: 10.1073/pnas.1715830115. Epub 2017 Dec 26.
6
The role of multilayers in preventing the premature buckling of the pulmonary surfactant.
Biochim Biophys Acta Biomembr. 2017 Aug;1859(8):1372-1380. doi: 10.1016/j.bbamem.2017.05.004. Epub 2017 May 10.
7
Effect of cholesterol on the molecular structure and transitions in a clinical-grade lung surfactant extract.
Proc Natl Acad Sci U S A. 2017 May 2;114(18):E3592-E3601. doi: 10.1073/pnas.1701239114. Epub 2017 Apr 17.
8
Cyclization Improves Membrane Permeation by Antimicrobial Peptoids.
Langmuir. 2016 Dec 6;32(48):12905-12913. doi: 10.1021/acs.langmuir.6b03477. Epub 2016 Nov 15.
9
Monomolecular Siloxane Film as a Model of Single Site Catalysts.
J Am Chem Soc. 2016 Sep 28;138(38):12432-9. doi: 10.1021/jacs.6b05711. Epub 2016 Sep 20.
10
Modification of Salmonella Lipopolysaccharides Prevents the Outer Membrane Penetration of Novobiocin.
Biophys J. 2015 Dec 15;109(12):2537-2545. doi: 10.1016/j.bpj.2015.10.013.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验