Suppr超能文献

胆固醇对 DPPC 单层结构和崩溃的影响。

Effects of cholesterol on the structure and collapse of DPPC monolayers.

机构信息

Department of Physics, Center for Molecular Study of Condensed Soft Matter (μCoSM), Pritzker Institute of Biomedical Science and Engineering, Illinois Institute of Technology, Chicago, Illinois.

Pulmonary & Critical Care Medicine, Oregon Health & Science University, Portland, Oregon.

出版信息

Biophys J. 2022 Sep 20;121(18):3533-3541. doi: 10.1016/j.bpj.2022.07.007. Epub 2022 Jul 14.

Abstract

Cholesterol induces faster collapse by compressed films of pulmonary surfactant. Because collapse prevents films from reaching the high surface pressures achieved in the alveolus, most therapeutic surfactants remove or omit cholesterol. The studies here determined the structural changes by which cholesterol causes faster collapse by films of dipalmitoyl phosphatidylcholine, used as a simple model for the functional alveolar film. Measurements of isobaric collapse, with surface pressure held constant at 52 mN/m, showed that cholesterol had little effect until the mol fraction of cholesterol, X, exceeded 0.20. Structural measurements of grazing incidence X-ray diffraction at ambient laboratory temperatures and a surface pressure of 44 mN/m, just below the onset of collapse, showed that the major structural change in an ordered phase occurred at lower X. A centered rectangular unit cell with tilted chains converted to an untilted hexagonal structure over the range of X = 0.0-0.1. For X = 0.1-0.4, the ordered structure was nearly invariant; the hexagonal unit cell persisted, and the spacing of the chains was essentially unchanged. That invariance strongly suggests that above X = 0.1, cholesterol partitions into a disordered phase, which coexists with the ordered domains. The phase rule requires that for a binary film with coexisting phases, the stoichiometries of the ordered and disordered regions must remain constant. Added cholesterol must increase the area of the disordered phase at the expense of the ordered regions. X-ray scattering from dipalmitoyl phosphatidylcholine/cholesterol fit with that prediction. The data also show a progressive decrease in the size of crystalline domains. Our results suggest that cholesterol promotes adsorption not by altering the unit cell of the ordered phase but by decreasing both its total area and the size of individual crystallites.

摘要

胆固醇会导致肺表面活性剂的压缩薄膜更快地塌陷。由于塌陷会阻止薄膜达到肺泡中达到的高表面压力,因此大多数治疗性表面活性剂会去除或省略胆固醇。本研究旨在确定胆固醇通过二棕榈酰磷脂酰胆碱(DPPC)薄膜导致更快塌陷的结构变化,DPPC 用作功能性肺泡膜的简单模型。在表面压力恒定为 52 mN/m 的等压塌陷测量中,发现胆固醇几乎没有影响,直到胆固醇的摩尔分数 X 超过 0.20。在环境实验室温度和表面压力为 44 mN/m 时进行的掠入射 X 射线衍射结构测量,略低于塌陷开始时,表明有序相中的主要结构变化发生在较低的 X 值。一个以中心为矩形的单位细胞,其倾斜链在 X = 0.0-0.1 范围内转换为未倾斜的六方结构。对于 X = 0.1-0.4,有序结构几乎不变;六方单位胞保持不变,并且链的间距基本不变。这种不变性强烈表明,在 X > 0.1 时,胆固醇分配到无序相中,与有序域共存。相律要求对于具有共存相的二元膜,有序和无序区域的化学计量比必须保持恒定。添加的胆固醇必须增加无序相的面积,而牺牲有序区域。二棕榈酰磷脂酰胆碱/胆固醇的 X 射线散射与该预测相符。数据还显示出结晶域尺寸的逐渐减小。我们的结果表明,胆固醇促进吸附不是通过改变有序相的单位细胞,而是通过减小其总面积和单个晶体的尺寸。

相似文献

1
Effects of cholesterol on the structure and collapse of DPPC monolayers.
Biophys J. 2022 Sep 20;121(18):3533-3541. doi: 10.1016/j.bpj.2022.07.007. Epub 2022 Jul 14.
4
Structural Changes in Films of Pulmonary Surfactant Induced by Surfactant Vesicles.
Langmuir. 2020 Nov 17;36(45):13439-13447. doi: 10.1021/acs.langmuir.0c01813. Epub 2020 Oct 20.
5
The melting of pulmonary surfactant monolayers.
J Appl Physiol (1985). 2007 May;102(5):1739-45. doi: 10.1152/japplphysiol.00948.2006. Epub 2006 Dec 28.
6
Liquid-crystalline collapse of pulmonary surfactant monolayers.
Biophys J. 2003 Jun;84(6):3792-806. doi: 10.1016/S0006-3495(03)75107-8.
7
Phase transitions in films of lung surfactant at the air-water interface.
Biophys J. 1998 Jun;74(6):2983-95. doi: 10.1016/S0006-3495(98)78005-1.

引用本文的文献

1
Effects of spontaneous curvature on interfacial adsorption and collapse of phospholipid monolayers.
Am J Physiol Lung Cell Mol Physiol. 2024 Dec 1;327(6):L876-L882. doi: 10.1152/ajplung.00193.2024. Epub 2024 Oct 22.
2
The biophysical function of pulmonary surfactant.
Biophys J. 2024 Jun 18;123(12):1519-1530. doi: 10.1016/j.bpj.2024.04.021. Epub 2024 Apr 25.
3
Interfacial structure of pulmonary surfactants revisited: Cholesterol and surface pressure effects.
Biophys J. 2022 Sep 20;121(18):3305-3306. doi: 10.1016/j.bpj.2022.08.004. Epub 2022 Aug 12.

本文引用的文献

1
Aerosolized Calfactant for Newborns With Respiratory Distress: A Randomized Trial.
Pediatrics. 2020 Nov;146(5). doi: 10.1542/peds.2019-3967. Epub 2020 Oct 15.
2
The Anionic Phospholipids of Bovine Pulmonary Surfactant.
Lipids. 2021 Jan;56(1):49-57. doi: 10.1002/lipd.12273. Epub 2020 Sep 7.
3
Effect of cholesterol on the molecular structure and transitions in a clinical-grade lung surfactant extract.
Proc Natl Acad Sci U S A. 2017 May 2;114(18):E3592-E3601. doi: 10.1073/pnas.1701239114. Epub 2017 Apr 17.
4
Minimally Invasive Surfactant Therapy and Noninvasive Respiratory Support.
Clin Perinatol. 2016 Dec;43(4):755-771. doi: 10.1016/j.clp.2016.07.010. Epub 2016 Oct 14.
5
Optical factors in the rapid analysis of captive bubbles.
Langmuir. 2012 Oct 2;28(39):14081-9. doi: 10.1021/la301864d. Epub 2012 Sep 21.
6
Cholesterol-phospholipid interactions: new insights from surface x-ray scattering data.
Phys Rev Lett. 2010 Mar 12;104(10):108101. doi: 10.1103/PhysRevLett.104.108101. Epub 2010 Mar 8.
7
Effect of cholesterol on the biophysical and physiological properties of a clinical pulmonary surfactant.
Biophys J. 2007 Aug 15;93(4):1391-401. doi: 10.1529/biophysj.106.099762. Epub 2007 May 25.
8
Pulmonary surfactant function is abolished by an elevated proportion of cholesterol.
Biochim Biophys Acta. 2005 Oct 15;1737(1):27-35. doi: 10.1016/j.bbalip.2005.09.002. Epub 2005 Oct 10.
9
Persistence of metastability after expansion of a supercompressed fluid monolayer.
Langmuir. 2004 Jun 8;20(12):4945-53. doi: 10.1021/la036150f.
10
Transformation diagrams for the collapse of a phospholipid monolayer.
Langmuir. 2004 Nov 9;20(23):10100-6. doi: 10.1021/la049081t.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验