Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Deajeon, Republic of Korea.
Neural Netw. 2021 Jan;133:1-10. doi: 10.1016/j.neunet.2020.09.022. Epub 2020 Oct 8.
Estimating the importance of each atom in a molecule is one of the most appealing and challenging problems in chemistry, physics, and materials science. The most common way to estimate the atomic importance is to compute the electronic structure using density functional theory (DFT), and then to interpret it using domain knowledge of human experts. However, this conventional approach is impractical to the large molecular database because DFT calculation requires large computation, specifically, O(n) time complexity w.r.t. the number of electronic basis functions. Furthermore, the calculation results should be manually interpreted by human experts to estimate the atomic importance in terms of the target molecular property. To tackle this problem, we first exploit the machine learning-based approach for the atomic importance estimation based on the reverse self-attention on graph neural networks and integrating it with graph-based molecular description. Our method provides an efficiently-automated and target-directed way to estimate the atomic importance without any domain knowledge of chemistry and physics.
估算分子中每个原子的重要性是化学、物理和材料科学中最吸引人、最具挑战性的问题之一。估算原子重要性最常用的方法是使用密度泛函理论(DFT)计算电子结构,然后使用人类专家的领域知识进行解释。然而,对于大型分子数据库来说,这种传统方法是不切实际的,因为 DFT 计算需要大量的计算,特别是,对于电子基函数的数量,计算复杂度为 O(n)。此外,计算结果应由人类专家手动解释,以根据目标分子性质来估算原子的重要性。为了解决这个问题,我们首先利用基于机器学习的方法,基于图神经网络的反向自注意力,并将其与基于图的分子描述相结合,进行原子重要性的估计。我们的方法提供了一种高效自动化、面向目标的方法,无需任何化学和物理领域知识即可估算原子的重要性。