John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.
Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211189, China.
Sensors (Basel). 2020 Oct 17;20(20):5886. doi: 10.3390/s20205886.
Microfabrication technologies have extensively advanced over the past decades, realizing a variety of well-designed compact devices for material synthesis, separation, analysis, monitoring, sensing, and so on. The performance of such devices has been undoubtedly improved, while it is still challenging to build up a platform by rationally combining multiple processes toward practical demands which become more diverse and complicated. Here, we present a simple and effective microfluidic system to produce and immobilize a well-defined functional material for on-chip permanganate (MnO) sensing. A droplet-based microfluidic approach that can continuously produce monodispersed droplets in a water-in-oil system is employed to prepare highly uniform microspheres (average size: 102 μm, coefficient of variation: 3.7%) composed of bovine serum albumin (BSA) hydrogel with autofluorescence properties in the presence of glutaraldehyde (GA). Each BSA hydrogel microsphere is subsequently immobilized in a microchannel with a hydrodynamic trapping structure to serve as an independent fluorescence unit. Various anions such as Cl, NO, PO, Br, BrO, ClO, SCN, HCO, and MnO are individually flowed into the microchannel, resulting in significant fluorescence quenching only in the case of MnO. Linear correlation is confirmed at an MnO concentration from 20 to 80 μM, and a limit of detection is estimated to be 1.7 μM. Furthermore, we demonstrate the simultaneous immobilization of two kinds of different microspheres in parallel microchannels, pure BSA hydrogel microspheres and BSA hydrogel microspheres containing rhodamine B molecules, making it possible to acquire two fluorescence signals (green and yellow). The present microfluidics-based combined approach will be useful to record a fingerprint of complicated samples for sensing/identification purposes by flexibly designing the size and composition of the BSA hydrogel microspheres, immobilizing them in a desired manner and obtaining a specific pattern.
微纳制造技术在过去几十年中得到了广泛的发展,实现了各种精心设计的紧凑设备,用于材料的合成、分离、分析、监测、传感等。这些设备的性能无疑得到了提高,然而,要根据实际需求,通过合理组合多个工艺来构建一个平台仍然具有挑战性,因为实际需求变得更加多样化和复杂。在这里,我们提出了一种简单有效的微流控系统,用于制备和固定用于片上高锰酸盐 (MnO) 传感的定义明确的功能材料。采用基于液滴的微流控方法,在油包水体系中连续产生单分散液滴,在戊二醛 (GA) 的存在下制备具有自发荧光性质的高度均匀的牛血清白蛋白 (BSA) 水凝胶微球(平均尺寸:102 μm,变异系数:3.7%)。随后,每个 BSA 水凝胶微球都被固定在具有流体动力学捕获结构的微通道中,作为独立的荧光单元。各种阴离子,如 Cl、NO、PO、Br、BrO、ClO、SCN、HCO 和 MnO,分别流入微通道,只有在 MnO 的情况下才会导致显著的荧光猝灭。在 MnO 浓度从 20 到 80 μM 的范围内证实了线性相关性,检测限估计为 1.7 μM。此外,我们还在并行微通道中同时固定两种不同的微球,即纯 BSA 水凝胶微球和含有罗丹明 B 分子的 BSA 水凝胶微球,从而有可能获得两个荧光信号(绿色和黄色)。本基于微流控的组合方法通过灵活设计 BSA 水凝胶微球的尺寸和组成,以期望的方式固定它们,并获得特定的图案,将有助于记录复杂样品的指纹,用于传感/识别目的。