Suppr超能文献

具有反蛋白石结构的纳米多孔硫化镍薄膜的简便合成及其作为染料敏化太阳能电池高效对电极的应用

Facile Synthesis of Nanoporous NiS Film with Inverse Opal Structure as Efficient Counter Electrode for DSSCs.

作者信息

Chen Xu, Zhang Yang, Pang Yashuai, Jiang Qiwei

机构信息

Department of Physics, School of Physics and Electronic, Henan University, Kaifeng 475004, China.

Institute of Macro/Nano Photonic Materials and Application, Henan University, Kaifeng 475004, China.

出版信息

Materials (Basel). 2020 Oct 18;13(20):4647. doi: 10.3390/ma13204647.

Abstract

To satisfy the high requirement of catalytic activity for efficient dye-sensitized solar cells (DSSCs), a novel nanoporous NiS film with inverse opal structure and outstanding electrocatalytic properties was prepared by a facile template-assisted electrodeposition method. The inverse opal structure makes the film have a larger specific surface area and more catalytic sites, thereby result to a higher electrocatalytic activity. Compared with the flat NiS/FTO electrode, this kind of nanoporous NiS film with inverse opal structure has higher catalytic activity and can be used as a cheap and efficient Pt-free electrode to replace the traditional Pt/FTO electrode. It is of great significance to reduce the cost and promote the wide application of DSSCs. This study opens up a new experimental exploration for further improving the catalytic activity of NiS electrode and the according photovoltaic efficiency of DSSCs. The template-assisted electrodeposition method proposed in this work provides a facile method for morphology control and an easy to be realized way to optimize the catalytic performance of the metal sulfides counter electrode.

摘要

为满足高效染料敏化太阳能电池(DSSCs)对催化活性的高要求,通过一种简便的模板辅助电沉积方法制备了一种具有反蛋白石结构和优异电催化性能的新型纳米多孔NiS薄膜。反蛋白石结构使薄膜具有更大的比表面积和更多的催化位点,从而导致更高的电催化活性。与平整的NiS/FTO电极相比,这种具有反蛋白石结构的纳米多孔NiS薄膜具有更高的催化活性,可作为一种廉价且高效的无Pt电极来替代传统的Pt/FTO电极。这对于降低成本和促进DSSCs的广泛应用具有重要意义。本研究为进一步提高NiS电极的催化活性以及相应的DSSCs光伏效率开辟了新的实验探索途径。本工作中提出的模板辅助电沉积方法为形貌控制提供了一种简便方法,也是优化金属硫化物对电极催化性能的一种易于实现的途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a43d/7603251/3d672ed09efe/materials-13-04647-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验