Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA.
MRI Department, Indiana University School of Medicine, 705 Riley Hospital Drive, Indianapolis, IN, 46202, USA.
Sci Rep. 2020 Oct 20;10(1):17857. doi: 10.1038/s41598-020-74920-1.
We assessed the accuracy of semi-automated tumor volume maps of plexiform neurofibroma (PN) generated by a deep neural network, compared to manual segmentation using diffusion weighted imaging (DWI) data. NF1 Patients were recruited from a phase II clinical trial for the treatment of PN. Multiple b-value DWI was imaged over the largest PN. All DWI datasets were registered and intensity normalized prior to segmentation with a multi-spectral neural network classifier (MSNN). Manual volumes of PN were performed on 3D-T2 images registered to diffusion images and compared to MSNN volumes with the Sørensen-Dice coefficient. Intravoxel incoherent motion (IVIM) parameters were calculated from resulting volumes. 35 MRI scans were included from 14 subjects. Sørensen-Dice coefficient between the semi-automated and manual segmentation was 0.77 ± 0.016. Perfusion fraction (f) was significantly higher for tumor versus normal tissue (0.47 ± 0.42 vs. 0.30 ± 0.22, p = 0.02), similarly, true diffusion (D) was significantly higher for PN tumor versus normal (0.0018 ± 0.0003 vs. 0.0012 ± 0.0002, p < 0.0001). By contrast, the pseudodiffusion coefficient (D*) was significantly lower for PN tumor versus normal (0.024 ± 0.01 vs. 0.031 ± 0.005, p < 0.0001). Volumes generated by a neural network from multiple diffusion data on PNs demonstrated good correlation with manual volumes. IVIM analysis of multiple b-value diffusion data demonstrates significant differences between PN and normal tissue.
我们评估了深度神经网络生成的丛状神经纤维瘤 (PN) 半自动肿瘤体积图的准确性,与使用扩散加权成像 (DWI) 数据的手动分割进行比较。NF1 患者从治疗 PN 的 II 期临床试验中招募。在最大的 PN 上进行了多 b 值 DWI 成像。在使用多光谱神经网络分类器 (MSNN) 进行分割之前,对所有 DWI 数据集进行了配准和强度归一化。在与 DWI 图像配准的 3D-T2 图像上手动进行 PN 体积,并与 MSNN 体积进行比较,使用 Sørensen-Dice 系数。从得到的体积计算了体素内不相干运动 (IVIM) 参数。共纳入 14 名受试者的 35 例 MRI 扫描。半自动和手动分割之间的 Sørensen-Dice 系数为 0.77±0.016。肿瘤与正常组织相比,灌注分数 (f) 显著升高 (0.47±0.42 对 0.30±0.22,p=0.02),同样,PN 肿瘤与正常组织相比,真扩散 (D) 也显著升高 (0.0018±0.0003 对 0.0012±0.0002,p<0.0001)。相比之下,PN 肿瘤与正常组织相比,假性扩散系数 (D*) 显著降低 (0.024±0.01 对 0.031±0.005,p<0.0001)。神经网络从多个 PN 的扩散数据生成的体积与手动体积具有良好的相关性。对多个 b 值扩散数据进行 IVIM 分析表明,PN 与正常组织之间存在显著差异。