Suppr超能文献

利用安第斯地区药用植物中的植物化学物质靶向 SARS-CoV-2 的 3CLpro 和 RdRp:分子对接和分子动力学模拟。

Targeting the 3CLpro and RdRp of SARS-CoV-2 with phytochemicals from medicinal plants of the Andean Region: molecular docking and molecular dynamics simulations.

机构信息

Departamento de Ciencias de La Vida y La Agricultura, Universidad de Las Fuerzas Armadas-ESPE, Sangolquí, Ecuador.

Grupo de Investigación y Desarrollo de la Biotecnología BioSin-Biociencias, Quito, Ecuador.

出版信息

J Biomol Struct Dyn. 2022 Mar;40(5):2010-2023. doi: 10.1080/07391102.2020.1835716. Epub 2020 Oct 21.

Abstract

Given the highly contagious nature of SARS-CoV-2, it has resulted in an unprecedented number of COVID-19 infected and dead people worldwide. Since there is currently no vaccine available in the market, the identification of potential drugs is urgently needed to control the pandemic. In this study, 92 phytochemicals from medicinal plants growing in the Andean region were screened against SARS-CoV-2 3 C-like protease (3CLpro) and RNA-dependent RNA polymerase (RdRp) in their active sites through molecular docking. The cutoff values were set from the lowest docking scores of the FDA-approved drugs that are being used to treat COVID-19 patients (remdesivir, lopinavir, and ritonavir). Compounds with docking scores that were lower than cutoff values were validated by molecular dynamics simulation with GROMACS, using root mean square deviation (RMSD), root mean square fluctuation (RMSF), radius of gyration (Rg), and intermolecular hydrogen bonds (H-bonds). Furthermore, binding free energies were estimated using the MM-PBSA method, and ADMET profiles of potential inhibitors were assessed. Computational analyses revealed that the interaction with hesperidin (theoretical binding energies, ΔG = -15.18 kcal/mol to 3CLpro and ΔG = -9.46 kcal/mol to RdRp) remained stable in both enzymes, unveiling its remarkable potential as a possible multitarget antiviral agent to treat COVID-19. Importantly, lupinifolin with an estimated binding affinity to 3CLpro higher than hesperidin (ΔG = -20.93 kcal/mol) is also a potential inhibitor of the 3CLpro. These two compounds displayed suitable pharmacological and structural properties to be drug candidates, demonstrating to be worthy of further research.Communicated by Ramaswamy H. Sarma.

摘要

由于 SARS-CoV-2 具有高度传染性,导致全球范围内 COVID-19 感染和死亡人数空前。由于目前市场上尚无疫苗可用,因此迫切需要寻找潜在的药物来控制大流行。在这项研究中,通过分子对接筛选了来自安第斯地区药用植物的 92 种植物化学物质,以针对 SARS-CoV-2 3CL 样蛋白酶(3CLpro)和 RNA 依赖性 RNA 聚合酶(RdRp)在其活性部位进行研究。截止值是根据用于治疗 COVID-19 患者的已批准的 FDA 药物(瑞德西韦、洛匹那韦和利托那韦)的最低对接评分设定的。对接评分低于截止值的化合物通过 GROMACS 进行分子动力学模拟进行了验证,使用均方根偏差(RMSD)、均方根波动(RMSF)、回转半径(Rg)和分子间氢键(H-键)。此外,使用 MM-PBSA 方法估算了结合自由能,并评估了潜在抑制剂的 ADMET 概况。计算分析表明,橙皮苷与两种酶的相互作用均保持稳定(理论结合能,对 3CLpro 为-15.18 kcal/mol,对 RdRp 为-9.46 kcal/mol),揭示了其作为治疗 COVID-19 的潜在多靶抗病毒药物的显著潜力。重要的是,芦丁醇与 3CLpro 的结合亲和力估计值高于橙皮苷(-20.93 kcal/mol),也是 3CLpro 的潜在抑制剂。这两种化合物表现出合适的药理学和结构特性,可作为候选药物,表明值得进一步研究。由 Ramaswamy H. Sarma 传达。

相似文献

8
Arjunetin as a promising drug candidate against SARS-CoV-2: molecular dynamics simulation studies.
J Biomol Struct Dyn. 2022;40(22):12358-12379. doi: 10.1080/07391102.2021.1970627. Epub 2021 Sep 17.

引用本文的文献

1
Potential of traditional medicines in alleviating COVID-19 symptoms.
Front Pharmacol. 2024 Sep 26;15:1452616. doi: 10.3389/fphar.2024.1452616. eCollection 2024.
2
Exploring Type II Diabetes Inhibitors from Genus Daphne Plant-species: An Integrated Computational Study.
Comb Chem High Throughput Screen. 2025;28(8):1413-1442. doi: 10.2174/0113862073262227231005074024.
5
Natural Isatin Derivatives Against Black Fungus: In Silico Studies.
Curr Microbiol. 2024 Mar 12;81(5):113. doi: 10.1007/s00284-024-03621-z.
7
The interaction of Synapsin 2a and Synaptogyrin-3 regulates fear extinction in mice.
J Clin Invest. 2024 Jan 4;134(4):e172802. doi: 10.1172/JCI172802.

本文引用的文献

1
Sofosbuvir as a potential alternative to treat the SARS-CoV-2 epidemic.
Sci Rep. 2020 Jun 9;10(1):9294. doi: 10.1038/s41598-020-66440-9.
2
Structural insights on vitamin D receptor and screening of new potent agonist molecules: structure and ligand-based approach.
J Biomol Struct Dyn. 2021 Jul;39(11):4148-4159. doi: 10.1080/07391102.2020.1775122. Epub 2020 Jun 11.
3
Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial.
Lancet. 2020 May 16;395(10236):1569-1578. doi: 10.1016/S0140-6736(20)31022-9. Epub 2020 Apr 29.
4
Antiviral activities of type I interferons to SARS-CoV-2 infection.
Antiviral Res. 2020 Jul;179:104811. doi: 10.1016/j.antiviral.2020.104811. Epub 2020 Apr 29.
5
Experimental Treatment with Favipiravir for COVID-19: An Open-Label Control Study.
Engineering (Beijing). 2020 Oct;6(10):1192-1198. doi: 10.1016/j.eng.2020.03.007. Epub 2020 Mar 18.
7
Structure of the RNA-dependent RNA polymerase from COVID-19 virus.
Science. 2020 May 15;368(6492):779-782. doi: 10.1126/science.abb7498. Epub 2020 Apr 10.
9
The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro.
Antiviral Res. 2020 Jun;178:104787. doi: 10.1016/j.antiviral.2020.104787. Epub 2020 Apr 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验