Sun Weiguo, Kang Dongliang, Chen Bole, Kuang Xiaoyu, Ding Kewei, Lu Cheng
Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China.
School of Mathematics and Physics, China University of Geosciences (Wuhan), Wuhan 430074, China.
J Phys Chem A. 2020 Nov 5;124(44):9187-9193. doi: 10.1021/acs.jpca.0c05197. Epub 2020 Oct 21.
Transition metal-doped electronic deficiency boron clusters have led to a vast variety of electronic bonding properties in chemistry and materials science. We have determined the ground state structures of PdB ( = 10-20) clusters by performing CALYPSO search and density functional theory (DFT) optimization. The identified lowest energy structures for both neutral and anionic Pd-doped boron clusters follow the structure evolution from two dimensional (2D) planar configurations to 3D distorted Pd-centered drum-like or tubular structures. Photoelectron spectra are simulated by time-dependent DFT theoretical calculations, which is a powerful method to validate our obtained ground-state structures. More interestingly, two "magic" number clusters, PdB and PdB, are found with enhanced stability in the middle size regime studied. Subsequently, molecular orbital and adaptive natural density partitioning analyses reveal that the high stability of the PdB cluster originates from doubly σ π aromatic and bonding interactions of d-type atomic orbitals of the Pd atom with tubular B units. The tubular PdB cluster, with robust relative stability, is an ideal embryo for forming finite and infinite nanotube nanomaterials.
过渡金属掺杂的电子缺陷硼簇在化学和材料科学中展现出了多种多样的电子键合特性。我们通过进行CALYPSO搜索和密度泛函理论(DFT)优化,确定了PdB(n = 10 - 20)簇的基态结构。所确定的中性和阴离子掺杂钯硼簇的最低能量结构遵循从二维(2D)平面构型到三维扭曲的以钯为中心的鼓状或管状结构的结构演化。通过含时DFT理论计算模拟光电子能谱,这是验证我们所获得的基态结构的一种有力方法。更有趣的是,在研究的中等尺寸范围内发现了两个具有增强稳定性的“幻数”簇,PdB₁₂和PdB₁₃。随后,分子轨道和自适应自然密度分区分析表明,PdB₁₂簇的高稳定性源于钯原子的d型原子轨道与管状硼单元的双重σ - π芳香性和键合相互作用。具有强大相对稳定性的管状PdB₁₃簇是形成有限和无限纳米管纳米材料的理想雏形。