Attar Andrew R, Chang Hung-Tzu, Britz Alexander, Zhang Xiang, Lin Ming-Fu, Krishnamoorthy Aravind, Linker Thomas, Fritz David, Neumark Daniel M, Kalia Rajiv K, Nakano Aiichiro, Ajayan Pulickel, Vashishta Priya, Bergmann Uwe, Leone Stephen R
Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States.
Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States.
ACS Nano. 2020 Nov 24;14(11):15829-15840. doi: 10.1021/acsnano.0c06988. Epub 2020 Oct 21.
We employ few-femtosecond extreme ultraviolet (XUV) transient absorption spectroscopy to reveal simultaneously the intra- and interband carrier relaxation and the light-induced structural dynamics in nanoscale thin films of layered 2H-MoTe semiconductor. By interrogating the valence electronic structure via localized Te 4 (39-46 eV) and Mo 4 (35-38 eV) core levels, the relaxation of the photoexcited hole distribution is directly observed in real time. We obtain hole thermalization and cooling times of 15 ± 5 fs and 380 ± 90 fs, respectively, and an electron-hole recombination time of 1.5 ± 0.1 ps. Furthermore, excitations of coherent out-of-plane A (5.1 THz) and in-plane E (3.7 THz) lattice vibrations are visualized through oscillations in the XUV absorption spectra. By comparison to Bethe-Salpeter equation simulations, the spectral changes are mapped to real-space excited-state displacements of the lattice along the dominant A coordinate. By directly and simultaneously probing the excited carrier distribution dynamics and accompanying femtosecond lattice displacement in 2H-MoTe within a single experiment, our work provides a benchmark for understanding the interplay between electronic and structural dynamics in photoexcited nanomaterials.
我们采用飞秒级极紫外(XUV)瞬态吸收光谱技术,以同时揭示层状2H-MoTe半导体纳米薄膜中的带内和带间载流子弛豫以及光致结构动力学。通过经由局域化的碲4(39 - 46电子伏特)和钼4(35 - 38电子伏特)核心能级来探究价电子结构,实时直接观测到了光激发空穴分布的弛豫过程。我们分别获得了空穴热化时间和冷却时间为15 ± 5飞秒和380 ± 90飞秒,以及电子 - 空穴复合时间为1.5 ± 0.1皮秒。此外,通过XUV吸收光谱中的振荡现象,可视化了面外相干A(5.1太赫兹)和面内E(3.7太赫兹)晶格振动的激发情况。通过与贝特 - 萨尔皮特方程模拟结果进行比较,将光谱变化映射到晶格沿主导A坐标的实空间激发态位移上。通过在单个实验中直接且同时探测2H-MoTe中受激载流子分布动力学以及伴随的飞秒级晶格位移,我们的工作为理解光激发纳米材料中电子动力学与结构动力学之间的相互作用提供了一个基准。