Department of Chemistry, Princeton University, Washington Road, Princeton, New Jersey 08544, United States.
Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States.
Acc Chem Res. 2022 Mar 15;55(6):893-903. doi: 10.1021/acs.accounts.1c00765. Epub 2022 Mar 3.
Extreme ultraviolet light sources based on high harmonic generation are enabling the development of novel spectroscopic methods to help advance the frontiers of ultrafast science and technology. In this Account, we discuss the development of extreme ultraviolet reflection-absorption (XUV-RA) spectroscopy at near grazing incident reflection geometry and highlight recent applications of this method to study ultrafast electron dynamics at surfaces. Measuring core-to-valence transitions with broadband, femtosecond pulses of XUV light extends the benefits of X-ray absorption spectroscopy to a laboratory tabletop by providing a chemical fingerprint of materials, including the ability to resolve individual elements with sensitivity to oxidation state, spin state, carrier polarity, and coordination geometry. Combining this chemical state sensitivity with femtosecond time resolution provides new insight into the material properties that govern charge carrier dynamics in complex materials. It is well-known that surface dynamics differ significantly from equivalent processes in bulk materials and that charge separation, trapping, transport, and recombination occurring uniquely at surfaces govern the efficiency of numerous technologically relevant processes spanning photocatalysis, photovoltaics, and information storage and processing. Importantly, XUV-RA spectroscopy at near grazing angle is also surface sensitive with a probe depth of ∼3 nm, providing a new window into electronic and structural dynamics at surfaces and interfaces. Here we highlight the unique capabilities and recent applications of XUV-RA spectroscopy to study photoinduced surface dynamics in metal oxide semiconductors, including photocatalytic oxides (FeO, CoO NiO, and CuFeO) as well as photoswitchable magnetic oxide (CoFeO). We first compare the ultrafast electron self-trapping rates via small polaron formation at the surface and bulk of FeO where we note that the energetics and kinetics of this process differ significantly at the surface. Additionally, we demonstrate the ability to systematically tune this kinetics by molecular functionalization, thereby providing a route to control carrier transport at surfaces. We also measure the spectral signatures of charge transfer excitons with site specific localization of both electrons and holes in a series of transition metal oxide semiconductors (FeO, NiO, CoO). The presence of valence band holes probed at the oxygen L-edge confirms a direct relationship between the metal-oxygen bond covalency and water oxidation efficiency. For a mixed metal oxide CuFeO in the layered delafossite structure, XUV-RA reveals that the sub-picosecond hole thermalization from O 2p to Cu 3d states of CuFeO leads to the spatial separation of electrons and holes, resulting in exceptional photocatalytic performance for H evolution and CO reduction of this material. Finally, we provide an example to show the ability of XUV-RA to probe spin state specific dynamics in a photoswitchable ferrimagnet, cobalt ferrite (CoFeO). This study provides a detailed understating of ultrafast spin switching in a complex magnetic material with site-specific resolution. In summary, the applications of XUV-RA spectroscopy demonstrated here illustrate the current abilities and future promise of this method to extend molecule-level understanding from well-defined photochemical complexes to complex materials so that charge and spin dynamics at surfaces can be tuned with the precision of molecular photochemistry.
基于高次谐波产生的极紫外光源正在推动新型光谱方法的发展,以帮助推进超快科学技术的前沿。在本报告中,我们讨论了在近掠入射反射几何形状下极紫外反射吸收(XUV-RA)光谱的发展,并强调了该方法在研究表面超快电子动力学方面的最新应用。使用极紫外光的宽带飞秒脉冲测量芯到价跃迁将 X 射线吸收光谱的优势扩展到实验室台式设备,提供了材料的化学指纹,包括通过氧化态、自旋态、载流子极性和配位几何分辨率来分辨单个元素的能力。将这种化学状态灵敏度与飞秒时间分辨率相结合,为理解复杂材料中电荷载流子动力学的材料特性提供了新的见解。众所周知,表面动力学与体材料中的等效过程有很大的不同,并且仅在表面发生的电荷分离、捕获、传输和复合决定了许多与技术相关的过程的效率,这些过程涵盖了光催化、光伏以及信息存储和处理。重要的是,近掠入射角度的 XUV-RA 光谱也具有表面敏感性,其探测深度约为 3nm,为表面和界面的电子和结构动力学提供了新的窗口。在这里,我们重点介绍 XUV-RA 光谱在研究金属氧化物半导体中光诱导表面动力学方面的独特功能和最新应用,包括光催化氧化物(FeO、CoO、NiO 和 CuFeO)以及光开关磁性氧化物(CoFeO)。我们首先比较了 FeO 表面和体中的超快电子自陷速率,通过小极化子形成,我们注意到该过程的能量和动力学在表面上有显著差异。此外,我们证明了通过分子功能化系统地调节此动力学的能力,从而为控制表面载流子传输提供了途径。我们还在一系列过渡金属氧化物半导体(FeO、NiO、CoO)中测量了具有电子和空穴局域化的电荷转移激子的光谱特征。在氧 L 边探测到的价带空穴证实了金属-氧键共价性与水氧化效率之间的直接关系。对于具有层状德拜石结构的混合金属氧化物 CuFeO,XUV-RA 表明,O 2p 到 Cu 3d 态的 CuFeO 中孔的亚皮秒热化导致电子和空穴的空间分离,从而导致该材料在 H 演化和 CO 还原方面具有出色的光催化性能。最后,我们提供了一个示例来说明 XUV-RA 在光开关铁磁体 CoFeO 中探测自旋态特异性动力学的能力。这项研究提供了对具有特定于站点分辨率的复杂磁性材料中超快自旋转换的详细理解。总之,这里展示的 XUV-RA 光谱的应用说明了该方法目前的能力和未来的前景,即将分子水平的理解从明确定义的光化学复合物扩展到复杂材料,以便可以像分子光化学那样精确地调节表面的电荷和自旋动力学。