Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland.
Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, U.K.
J Chem Inf Model. 2020 Dec 28;60(12):6595-6611. doi: 10.1021/acs.jcim.0c00858. Epub 2020 Oct 21.
For efficient structure-guided drug design, it is important to have an excellent understanding of the quality of interactions between the target receptor and bound ligands. Identification and characterization of poor intermolecular contacts offers the possibility to focus design efforts directly on ligand regions with suboptimal molecular recognition. To enable a more straightforward identification of these in a structural model, we use a suitably enhanced version of our previously introduced statistical ratio of frequencies () approach. This allows us to highlight protein-ligand interactions and geometries that occur much less often in the Protein Data Bank than would be expected from the exposed surface areas of the interacting atoms. We provide a comprehensive overview of such noncompetitive interactions and geometries for a set of common ligand substituents. Through retrospective case studies on congeneric series and single-point mutations for several pharmaceutical targets, we illustrate how knowledge of noncompetitive interactions could be exploited in the drug design process.
为了进行高效的基于结构的药物设计,深入了解目标受体与结合配体之间相互作用的质量非常重要。识别和描述不良的分子间相互作用,使得我们有可能直接关注具有非最佳分子识别能力的配体区域。为了在结构模型中更直接地识别这些相互作用,我们使用了我们之前介绍的适当增强版统计频率比()方法。这使我们能够突出显示在蛋白质数据库中出现频率明显低于根据相互作用原子的暴露表面积所预期的蛋白质-配体相互作用和几何形状。我们为一组常见的配体取代基提供了这种非竞争性相互作用和几何形状的全面概述。通过对几个药物靶点的同系物系列和单点突变的回顾性案例研究,我们说明了在药物设计过程中如何利用非竞争性相互作用的知识。