Suppr超能文献

有机单晶中的能量传输与光传播机制

Energy transport and light propagation mechanisms in organic single crystals.

作者信息

Wittmann Bernd, Wiesneth Stephan, Motamen Sajedeh, Simon Laurent, Serein-Spirau Françoise, Reiter Günter, Hildner Richard

机构信息

Spectroscopy of Soft Matter, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany.

Institute of Physics, University of Freiburg, Hermann-Herder-Straße 3, 79104 Freiburg, Germany.

出版信息

J Chem Phys. 2020 Oct 14;153(14):144202. doi: 10.1063/5.0019832.

Abstract

Unambiguous information about spatiotemporal exciton dynamics in three-dimensional nanometer- to micrometer-sized organic structures is difficult to obtain experimentally. Exciton dynamics can be modified by annihilation processes, and different light propagation mechanisms can take place, such as active waveguiding and photon recycling. Since these various processes and mechanisms can lead to similar spectroscopic and microscopic signatures on comparable time scales, their discrimination is highly demanding. Here, we study individual organic single crystals grown from thiophene-based oligomers. We use time-resolved detection-beam scanning microscopy to excite a local singlet exciton population and monitor the subsequent broadening of the photoluminescence (PL) signal in space and on pico- to nanosecond time scales. Combined with Monte Carlo simulations, we were able to exclude photon recycling for our system, whereas leakage radiation upon active waveguiding leads to an apparent PL broadening of about 20% compared to the initial excitation profile. Exciton-exciton annihilation becomes important at high excitation fluence and apparently accelerates the exciton dynamics leading to apparently increased diffusion lengths. At low excitation fluences, the spatiotemporal PL broadening results from singlet exciton diffusion with diffusion lengths of up to 210 nm. Surprisingly, even in structurally highly ordered single crystals, the transport dynamics is subdiffusive and shows variations between different crystals, which we relate to varying degrees of static and dynamic electronic disorders.

摘要

在三维纳米到微米尺寸的有机结构中,很难通过实验获得关于时空激子动力学的明确信息。激子动力学可以通过湮灭过程进行修改,并且可以发生不同的光传播机制,例如有源波导和光子回收。由于这些不同的过程和机制在相当的时间尺度上可以导致相似的光谱和微观特征,因此对它们进行区分的要求很高。在这里,我们研究了由噻吩基低聚物生长的单个有机单晶。我们使用时间分辨检测光束扫描显微镜来激发局部单重态激子群体,并在皮秒到纳秒的时间尺度上监测光致发光(PL)信号在空间中的随后展宽。结合蒙特卡罗模拟,我们能够排除我们系统中的光子回收,而有源波导时的泄漏辐射导致与初始激发轮廓相比约20%的明显PL展宽。在高激发通量下,激子 - 激子湮灭变得很重要,并且明显加速了激子动力学,导致扩散长度明显增加。在低激发通量下,时空PL展宽是由单重态激子扩散引起的,扩散长度可达210 nm。令人惊讶的是,即使在结构高度有序的单晶中,传输动力学也是亚扩散的,并且在不同晶体之间表现出变化,我们将其与不同程度的静态和动态电子无序联系起来。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验