Brinatti Vazquez Guillermo D, Lo Gerfo Morganti Giulia, Vasilev Cvetelin, Hunter C Neil, van Hulst Niek F
ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona 08860, Spain.
School of Biosciences, University of Sheffield, Sheffield S10 2TN, U.K.
ACS Photonics. 2024 Feb 22;11(3):1318-1326. doi: 10.1021/acsphotonics.4c00004. eCollection 2024 Mar 20.
With the increasing demand for new materials for light-harvesting applications, spatiotemporal microscopy techniques are receiving increasing attention as they allow direct observation of the nanoscale diffusion of excitons. However, the use of pulsed and tightly focused laser beams generates light intensities far above those expected under sunlight illumination, leading to photodamage and nonlinear effects that seriously limit the accuracy and applicability of these techniques, especially in biological or atomically thin materials. In this work, we present a novel spatiotemporal microscopy technique that exploits structured excitation in order to dramatically decrease the excitation intensity, up to 10,000-fold when compared with previously reported spatiotemporal photoluminescence microscopy experiments. We tested our method in two different systems, reporting the first exciton diffusion measurement at illumination conditions below sunlight, both considering average power and peak exciton densities in an organic photovoltaic sample (Y6), where we tracked the excitons for up to five recombination lifetimes. Next, nanometer-scale energy transport was directly observed for the first time in both space and time in a printed monolayer of the light-harvesting complex 2 from purple bacteria.
随着对用于光捕获应用的新材料的需求不断增加,时空显微镜技术正受到越来越多的关注,因为它们能够直接观察激子的纳米级扩散。然而,脉冲和强聚焦激光束的使用所产生的光强度远高于阳光照射下预期的强度,从而导致光损伤和非线性效应,严重限制了这些技术的准确性和适用性,尤其是在生物材料或原子级薄材料中。在这项工作中,我们提出了一种新颖的时空显微镜技术,该技术利用结构化激发来显著降低激发强度,与先前报道的时空光致发光显微镜实验相比,降低幅度高达10000倍。我们在两个不同的系统中测试了我们的方法,在低于阳光的照明条件下进行了首次激子扩散测量,同时考虑了有机光伏样品(Y6)中的平均功率和峰值激子密度,在该样品中我们追踪激子长达五个复合寿命。接下来,首次在空间和时间上直接观察到了来自紫色细菌的光捕获复合物2的印刷单层中的纳米级能量传输。