MRC Laboratory of Molecular Biology, Cambridge, UK.
Materials and Structural Analysis Division, Thermo Fisher Scientific, Eindhoven, The Netherlands.
Nature. 2020 Nov;587(7832):152-156. doi: 10.1038/s41586-020-2829-0. Epub 2020 Oct 21.
The three-dimensional positions of atoms in protein molecules define their structure and their roles in biological processes. The more precisely atomic coordinates are determined, the more chemical information can be derived and the more mechanistic insights into protein function may be inferred. Electron cryo-microscopy (cryo-EM) single-particle analysis has yielded protein structures with increasing levels of detail in recent years. However, it has proved difficult to obtain cryo-EM reconstructions with sufficient resolution to visualize individual atoms in proteins. Here we use a new electron source, energy filter and camera to obtain a 1.7 Å resolution cryo-EM reconstruction for a human membrane protein, the β3 GABA receptor homopentamer. Such maps allow a detailed understanding of small-molecule coordination, visualization of solvent molecules and alternative conformations for multiple amino acids, and unambiguous building of ordered acidic side chains and glycans. Applied to mouse apoferritin, our strategy led to a 1.22 Å resolution reconstruction that offers a genuine atomic-resolution view of a protein molecule using single-particle cryo-EM. Moreover, the scattering potential from many hydrogen atoms can be visualized in difference maps, allowing a direct analysis of hydrogen-bonding networks. Our technological advances, combined with further approaches to accelerate data acquisition and improve sample quality, provide a route towards routine application of cryo-EM in high-throughput screening of small molecule modulators and structure-based drug discovery.
蛋白质分子中原子的三维位置决定了它们的结构和在生物过程中的作用。原子坐标测定得越精确,就可以衍生出越多的化学信息,对蛋白质功能的机制理解也可能越深入。近年来,电子晶体学显微镜(cryo-EM)单颗粒分析已经可以得到越来越详细的蛋白质结构。然而,要获得足以可视化蛋白质中单个原子的 cryo-EM 重构,一直都颇具难度。在这里,我们使用了一种新型电子源、能量过滤器和相机,获得了人类膜蛋白β3 GABA 受体同五聚体的 1.7Å 分辨率 cryo-EM 重构。这种图谱可以让我们详细了解小分子的配位情况、溶剂分子的可视化以及多种氨基酸的替代构象,并可以明确构建有序的酸性侧链和聚糖。将该策略应用于小鼠脱铁铁蛋白,我们获得了 1.22Å 分辨率的重构,这为使用单颗粒 cryo-EM 对蛋白质分子进行真正的原子分辨率观察提供了可能。此外,许多氢原子的散射势能可以在差分图谱中可视化,从而可以直接分析氢键网络。我们的技术进步,结合进一步的方法来加速数据采集和提高样品质量,为 cryo-EM 在小分子调节剂高通量筛选和基于结构的药物发现中的常规应用提供了一条途径。