Suppr超能文献

由……形成的生物材料及其潜在应用。 (原英文文本表述不完整,此译文是基于现有内容尽量完整通顺的翻译)

Biological materials formed by and their potential applications.

作者信息

Yang Mengran, Zhan Yue, Zhang Shuang, Wang Weidong, Yan Lei

机构信息

Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University (HBAU), 5 Xinfeng Road, Daqing High-Tech Industrial Development Zone, Daqing, Heilongjiang Province 163319 People's Republic of China.

School of Life Science, Lanzhou University, Tianshui Road No. 222, Lanzhou, 730000 People's Republic of China.

出版信息

3 Biotech. 2020 Nov;10(11):475. doi: 10.1007/s13205-020-02463-3. Epub 2020 Oct 13.

Abstract

A variety of biological materials including schwertmannite, jarosite, iron-sulfur cluster (ISC) and magnetosomes can be produced by (). Their possible formation mechanisms involved in iron transformation, iron transport, and electron transfer were proposed. The schwertmannite formation usually occurs under the pH of 2.0-3.51, and a lower or higher pH will promote jarosite to be produced. Available Fe in the environment and the carrier proteins that can transport Fe to the intracellular membranes of play a critical role in the synthesis of magnetosomes and ISC. The potential applications of these biological materials were reviewed, including removal of heavy metal by schwertmannite, detoxification of toxic species by jarosite, the transference of electron and ripening the iron sulfur protein by ISC, and biomedical application of magnetosomes. Additionally, some perspectives for the molecular mechanisms of synthesis and regulation of these biomaterials were briefly described.

摘要

包括施韦策尔矿、黄钾铁矾、铁硫簇(ISC)和磁小体在内的多种生物材料可以通过()产生。提出了它们在铁转化、铁运输和电子转移中可能的形成机制。施韦策尔矿的形成通常发生在pH为2.0 - 3.51的条件下,较低或较高的pH值会促进黄钾铁矾的产生。环境中可利用的铁以及能够将铁运输到()细胞内膜的载体蛋白在磁小体和ISC的合成中起关键作用。综述了这些生物材料的潜在应用,包括施韦策尔矿去除重金属、黄钾铁矾对有毒物质的解毒作用、ISC的电子转移和铁硫蛋白的成熟以及磁小体的生物医学应用。此外,还简要描述了这些生物材料合成和调控分子机制的一些观点。

相似文献

1
Biological materials formed by and their potential applications.
3 Biotech. 2020 Nov;10(11):475. doi: 10.1007/s13205-020-02463-3. Epub 2020 Oct 13.
2
The nature of Schwertmannite and Jarosite mediated by two strains of Acidithiobacillus ferrooxidans with different ferrous oxidation ability.
Mater Sci Eng C Mater Biol Appl. 2013 Jul 1;33(5):2679-85. doi: 10.1016/j.msec.2013.02.026. Epub 2013 Feb 24.
3
The coupling reaction of Fe bio-oxidation and resulting Fe hydrolysis drastically improve the formation of iron hydroxysulfate minerals in AMD.
Environ Technol. 2021 Jun;42(15):2325-2334. doi: 10.1080/09593330.2019.1701564. Epub 2019 Dec 18.
6
Acidithiobacillus ferrooxidans and its potential application.
Extremophiles. 2018 Jul;22(4):563-579. doi: 10.1007/s00792-018-1024-9. Epub 2018 Apr 25.
7
Acidophilic Iron- and Sulfur-Oxidizing Bacteria, , Drives Alkaline pH Neutralization and Mineral Weathering in Fe Ore Tailings.
Environ Sci Technol. 2021 Jun 15;55(12):8020-8034. doi: 10.1021/acs.est.1c00848. Epub 2021 May 27.
8
Hydroxyl, Fe, and Jointly Determined the Crystal Growth and Morphology of Schwertmannite in a Sulfate-Rich Acidic Environment.
ACS Omega. 2021 Jan 22;6(4):3194-3201. doi: 10.1021/acsomega.0c05606. eCollection 2021 Feb 2.
9
Synthesis of argentojarosite with simulated bioleaching solutions produced by Acidithiobacillus ferrooxidans.
Mater Sci Eng C Mater Biol Appl. 2016 Sep 1;66:164-169. doi: 10.1016/j.msec.2016.04.061. Epub 2016 Apr 20.
10
Effects of Fe(II) concentration on the biosynthesis of schwertmannite by and the As(III) removal capacity of schwertmannite.
Environ Technol. 2023 Nov;44(27):4147-4156. doi: 10.1080/09593330.2022.2082323. Epub 2022 May 29.

引用本文的文献

1
Novel metal sites revealed by spectroscopic and structural characterization of the ferric uptake regulator from .
Comput Struct Biotechnol J. 2025 Feb 19;27:765-777. doi: 10.1016/j.csbj.2025.02.017. eCollection 2025.
2
Therapeutic Innovations in Nanomedicine: Exploring the Potential of Magnetotactic Bacteria and Bacterial Magnetosomes.
Int J Nanomedicine. 2025 Jan 11;20:403-444. doi: 10.2147/IJN.S462031. eCollection 2025.
3
Exploring acid mine drainage treatment through adsorption: a bibliometric analysis.
Environ Sci Pollut Res Int. 2024 Oct;31(50):59659-59680. doi: 10.1007/s11356-024-35047-2. Epub 2024 Oct 1.

本文引用的文献

1
Schwertmannite: occurrence, properties, synthesis and application in environmental remediation.
RSC Adv. 2018 Oct 1;8(59):33583-33599. doi: 10.1039/c8ra06025h. eCollection 2018 Sep 28.
3
Biocompatibility evaluation of magnetosomes formed by Acidithiobacillus ferrooxidans.
Mater Sci Eng C Mater Biol Appl. 2012 Oct 1;32(7):1802-1807. doi: 10.1016/j.msec.2012.04.062. Epub 2012 Apr 28.
4
Mobilization of arsenic during reductive dissolution of As(V)-bearing jarosite by a sulfate reducing bacterium.
J Hazard Mater. 2021 Jan 15;402:123717. doi: 10.1016/j.jhazmat.2020.123717. Epub 2020 Aug 19.
5
Cardiolipin-deficient cells have decreased levels of the iron-sulfur biogenesis protein frataxin.
J Biol Chem. 2020 Aug 14;295(33):11928-11937. doi: 10.1074/jbc.RA120.013960. Epub 2020 Jul 6.
6
8
From the discovery to molecular understanding of cellular iron-sulfur protein biogenesis.
Biol Chem. 2020 May 26;401(6-7):855-876. doi: 10.1515/hsz-2020-0117.
9
Molecular Mechanism of ISC Iron-Sulfur Cluster Biogenesis Revealed by High-Resolution Native Mass Spectrometry.
J Am Chem Soc. 2020 Apr 1;142(13):6018-6029. doi: 10.1021/jacs.9b11454. Epub 2020 Mar 17.
10
Effect of ferric ions on the anaerobic bio-dissolution of jarosites by Acidithiobacillus ferrooxidans.
Sci Total Environ. 2020 Mar 25;710:136334. doi: 10.1016/j.scitotenv.2019.136334. Epub 2019 Dec 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验