Suppr超能文献

混合泊松-高斯噪声下的快速粗糙度最小化图像恢复

Fast Roughness Minimizing Image Restoration Under Mixed Poisson-Gaussian Noise.

作者信息

Ghulyani Manu, Arigovindan Muthuvel

出版信息

IEEE Trans Image Process. 2021;30:134-149. doi: 10.1109/TIP.2020.3032036. Epub 2020 Nov 18.

Abstract

Image acquisition in many biomedical imaging modalities is corrupted by Poisson noise followed by additive Gaussian noise. While total variation and related regularization methods for solving biomedical inverse problems are known to yield high quality reconstructions in most situations, such methods mostly use log-likelihood of either Gaussian or Poisson noise models, and rarely use mixed Poisson-Gaussian (PG) noise model. There is a recent work which deals with exact PG likelihood and total variation regularization. This method adapts the primal-dual approach involving gradients steps on the PG log-likelihood, with step size limited by the inverse of its Lipschitz constant. This leads to limitations in the convergence speed. Although the alternating direction method of multipliers (ADMM) algorithm does not have such step size restrictions, ADMM has never been applied for this problem, for the possible reason that PG log-likelihood is quite complex. In this paper, we develop an ADMM based optimization for roughness minimizing image restoration under PG log-likelihood. We achieve this by first developing a novel iterative method for computing the proximal solution of PG log-likelihood, deriving the termination conditions for this iterative method, and then integrating into a provably convergent ADMM scheme. We experimentally demonstrate that the proposed method outperform primal-dual method in most of the cases.

摘要

在许多生物医学成像模态中,图像采集会受到泊松噪声的影响,随后叠加高斯噪声。虽然已知用于解决生物医学逆问题的全变差及相关正则化方法在大多数情况下能产生高质量的重建结果,但此类方法大多使用高斯或泊松噪声模型的对数似然,很少使用混合泊松 - 高斯(PG)噪声模型。最近有一项工作涉及精确的PG似然和全变差正则化。该方法采用原始 - 对偶方法,在PG对数似然上进行梯度步长计算,步长受其利普希茨常数的倒数限制。这导致收敛速度受限。尽管乘子交替方向法(ADMM)算法没有此类步长限制,但ADMM从未应用于该问题,可能原因是PG对数似然相当复杂。在本文中,我们开发了一种基于ADMM的优化方法,用于在PG对数似然下最小化粗糙度的图像恢复。我们首先开发一种新颖的迭代方法来计算PG对数似然的近端解,推导该迭代方法的终止条件,然后将其集成到一个可证明收敛的ADMM方案中,从而实现这一目标。我们通过实验证明,在大多数情况下,所提出的方法优于原始 - 对偶方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验