Suppr超能文献

利用交替方向优化恢复泊松图像。

Restoration of Poissonian images using alternating direction optimization.

机构信息

Instituto de Telecomunicações, Lisboa, Portugal.

出版信息

IEEE Trans Image Process. 2010 Dec;19(12):3133-45. doi: 10.1109/TIP.2010.2053941. Epub 2010 Jun 28.

Abstract

Much research has been devoted to the problem of restoring Poissonian images, namely for medical and astronomical applications. However, the restoration of these images using state-of-the-art regularizers (such as those based upon multiscale representations or total variation) is still an active research area, since the associated optimization problems are quite challenging. In this paper, we propose an approach to deconvolving Poissonian images, which is based upon an alternating direction optimization method. The standard regularization [or maximum a posteriori (MAP)] restoration criterion, which combines the Poisson log-likelihood with a (nonsmooth) convex regularizer (log-prior), leads to hard optimization problems: the log-likelihood is nonquadratic and nonseparable, the regularizer is nonsmooth, and there is a nonnegativity constraint. Using standard convex analysis tools, we present sufficient conditions for existence and uniqueness of solutions of these optimization problems, for several types of regularizers: total-variation, frame-based analysis, and frame-based synthesis. We attack these problems with an instance of the alternating direction method of multipliers (ADMM), which belongs to the family of augmented Lagrangian algorithms. We study sufficient conditions for convergence and show that these are satisfied, either under total-variation or frame-based (analysis and synthesis) regularization. The resulting algorithms are shown to outperform alternative state-of-the-art methods, both in terms of speed and restoration accuracy.

摘要

已经有大量的研究致力于解决泊松图像恢复问题,特别是在医学和天文学应用方面。然而,使用最先进的正则化器(如基于多尺度表示或全变差的正则化器)来恢复这些图像仍然是一个活跃的研究领域,因为相关的优化问题极具挑战性。在本文中,我们提出了一种基于交替方向优化方法的泊松图像去卷积方法。标准的正则化[或最大后验(MAP)]恢复准则将泊松对数似然与(非光滑)凸正则化器(对数先验)相结合,导致了困难的优化问题:对数似然是非二次和不可分离的,正则化器是非光滑的,并且存在非负约束。使用标准的凸分析工具,我们为几种类型的正则化器(全变差、基于框架的分析和基于框架的综合)提出了这些优化问题解的存在性和唯一性的充分条件。我们使用增广拉格朗日算法的一种实例交替方向乘子法(ADMM)来解决这些问题。我们研究了收敛的充分条件,并表明在全变差或基于框架(分析和综合)正则化的情况下,这些条件都得到了满足。所得到的算法在速度和恢复准确性方面都优于替代的最先进方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验