Suppr超能文献

揭示对抗样本中的感知代理。

Revealing Perceptual Proxies with Adversarial Examples.

出版信息

IEEE Trans Vis Comput Graph. 2021 Feb;27(2):1073-1083. doi: 10.1109/TVCG.2020.3030429. Epub 2021 Jan 28.

Abstract

Data visualizations convert numbers into visual marks so that our visual system can extract data from an image instead of raw numbers. Clearly, the visual system does not compute these values as a computer would, as an arithmetic mean or a correlation. Instead, it extracts these patterns using perceptual proxies; heuristic shortcuts of the visual marks, such as a center of mass or a shape envelope. Understanding which proxies people use would lead to more effective visualizations. We present the results of a series of crowdsourced experiments that measure how powerfully a set of candidate proxies can explain human performance when comparing the mean and range of pairs of data series presented as bar charts. We generated datasets where the correct answer-the series with the larger arithmetic mean or range-was pitted against an "adversarial" series that should be seen as larger if the viewer uses a particular candidate proxy. We used both Bayesian logistic regression models and a robust Bayesian mixed-effects linear model to measure how strongly each adversarial proxy could drive viewers to answer incorrectly and whether different individuals may use different proxies. Finally, we attempt to construct adversarial datasets from scratch, using an iterative crowdsourcing procedure to perform black-box optimization.

摘要

数据可视化将数字转换为视觉标记,以便我们的视觉系统可以从图像中提取数据,而不是原始数字。显然,视觉系统不会像计算机那样计算这些值,例如平均值或相关性。相反,它使用感知代理来提取这些模式;这些是视觉标记的启发式快捷方式,例如质心或形状包络。了解人们使用哪些代理可以生成更有效的可视化效果。我们展示了一系列众包实验的结果,这些实验测量了当以条形图形式呈现一系列数据系列的平均值和范围时,一组候选代理可以解释人类性能的程度。我们生成了数据集,其中正确答案 - 算术平均值或范围较大的系列 - 与应被视为较大的“对抗性”系列相对抗,如果查看器使用特定的候选代理,则应将其视为较大。我们使用贝叶斯逻辑回归模型和稳健的贝叶斯混合效应线性模型来衡量每个对抗性代理可以在多大程度上驱动查看者错误回答,以及不同的人是否可能使用不同的代理。最后,我们尝试使用迭代众包过程从头开始构建对抗性数据集,以执行黑盒优化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验