Suppr超能文献

利用 SNP 扰动学习临床表型的基因网络。

Learning gene networks underlying clinical phenotypes using SNP perturbation.

机构信息

Machine Learning Department, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA.

Pulmonary, Allergy and Critical Care Division, Penn State Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA.

出版信息

PLoS Comput Biol. 2020 Oct 23;16(10):e1007940. doi: 10.1371/journal.pcbi.1007940. eCollection 2020 Oct.

Abstract

Availability of genome sequence, molecular, and clinical phenotype data for large patient cohorts generated by recent technological advances provides an opportunity to dissect the genetic architecture of complex diseases at system level. However, previous analyses of such data have largely focused on the co-localization of SNPs associated with clinical and expression traits, each identified from genome-wide association studies and expression quantitative trait locus mapping. Thus, their description of the molecular mechanisms behind the SNPs influencing clinical phenotypes was limited to the single gene linked to the co-localized SNP. Here we introduce PerturbNet, a statistical framework for learning gene networks that modulate the influence of genetic variants on phenotypes, using genetic variants as naturally occurring perturbation of a biological system. PerturbNet uses a probabilistic graphical model to directly model the cascade of perturbation from genetic variants to the gene network to the phenotype network along with the networks at each layer of the biological system. PerturbNet learns the entire model by solving a single optimization problem with an efficient algorithm that can analyze human genome-wide data within a few hours. PerturbNet inference procedures extract a detailed description of how the gene network modulates the genetic effects on phenotypes. Using simulated and asthma data, we demonstrate that PerturbNet improves statistical power for detecting disease-linked SNPs and identifies gene networks and network modules mediating the SNP effects on traits, providing deeper insights into the underlying molecular mechanisms.

摘要

由于最近技术进步产生的大量患者队列的基因组序列、分子和临床表型数据的可用性,为在系统水平上剖析复杂疾病的遗传结构提供了机会。然而,以前对这些数据的分析主要集中在与临床和表达特征相关的 SNP 的共定位上,这些 SNP 分别是从全基因组关联研究和表达数量性状位点映射中识别出来的。因此,它们对影响临床表型的 SNP 背后的分子机制的描述仅限于与共定位 SNP 相关联的单个基因。在这里,我们介绍了 PerturbNet,这是一种用于学习基因网络的统计框架,这些基因网络可以调节遗传变异对表型的影响,将遗传变异用作生物系统的自然扰动。PerturbNet 使用概率图形模型直接对从遗传变异到基因网络到表型网络的级联进行建模,以及生物系统中每个层次的网络。PerturbNet 通过解决一个具有高效算法的单一优化问题来学习整个模型,该算法可以在几个小时内分析人类全基因组数据。PerturbNet 的推断程序提取了基因网络如何调节遗传对表型影响的详细描述。使用模拟和哮喘数据,我们证明了 PerturbNet 提高了检测疾病相关 SNP 的统计能力,并确定了介导 SNP 对性状影响的基因网络和网络模块,为深入了解潜在的分子机制提供了更深入的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e24/7584257/86de2e613493/pcbi.1007940.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验