Zang Kathleen, Brossard Myriam, Wilson Thomas, Ali Shabana Amanda, Espin-Garcia Osvaldo
Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada.
Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada.
Osteoarthr Cartil Open. 2024 Nov 8;6(4):100540. doi: 10.1016/j.ocarto.2024.100540. eCollection 2024 Dec.
Genetic colocalization analysis is a statistical method that evaluates whether two traits (e.g., osteoarthritis [OA] risk and microRNA [miRNA] expression levels) share the same or distinct genetic association signals in a locus typically identified in genome-wide association studies (GWAS). This method is useful for providing insights into the biological relevance of genetic association signals, particularly in intergenic regions, which can help to elucidate disease mechanisms in OA and other complex traits.
To review the existing literature on genetic colocalization methods, assess their suitability for studying OA, and investigate their capacity to integrate miRNA data, while bearing in view their statistical assumptions.
We followed scoping review methodology and used Covidence software for data management. Search terms for colocalization, GWAS, and genetic or statistical models were used in the databases MEDLINE and EMBASE, searched till March 4, 2024.
Our search returned 546 peer-reviewed papers, of which 96 were included following title/abstract and full-text screening. Based on both cumulative and annual publication counts, the most cited method for colocalization analysis was coloc. Four papers examined OA-related phenotypes, and none examined miRNA. An approach to colocalization analysis using miRNA was postulated based on further hand-searching.
Colocalization analysis is a largely unexplored method in OA. Many of the approaches to colocalization analysis identified in this review, including the integration of GWAS and miRNA data, may help to elucidate genetic and epigenetic factors implicated in OA and other complex traits.
基因共定位分析是一种统计方法,用于评估两个性状(例如骨关节炎[OA]风险和微小RNA[miRNA]表达水平)在全基因组关联研究(GWAS)中通常鉴定出的一个基因座中是否共享相同或不同的遗传关联信号。该方法有助于深入了解遗传关联信号的生物学相关性,特别是在基因间区域,这有助于阐明OA和其他复杂性状的疾病机制。
回顾关于基因共定位方法的现有文献,评估其在研究OA方面的适用性,并研究其整合miRNA数据的能力,同时考虑其统计假设。
我们遵循范围综述方法,并使用Covidence软件进行数据管理。在MEDLINE和EMBASE数据库中使用共定位、GWAS以及遗传或统计模型的检索词,检索截至2024年3月4日的文献。
我们的检索返回了546篇同行评审论文,其中96篇在标题/摘要和全文筛选后被纳入。基于累积和年度发表数量,共定位分析中被引用最多的方法是coloc。四篇论文研究了与OA相关的表型,没有一篇研究miRNA。基于进一步的手工检索,提出了一种使用miRNA的共定位分析方法。
共定位分析在OA中是一种很大程度上未被探索的方法。本综述中确定的许多共定位分析方法,包括GWAS和miRNA数据的整合,可能有助于阐明与OA和其他复杂性状相关的遗传和表观遗传因素。