Suppr超能文献

可互操作的医疗数据:理解 COVID-19 的缺失环节。

Interoperable medical data: The missing link for understanding COVID-19.

机构信息

Australian e-Health Research Centre, Commonwealth Scientific and Industrial Research Organisation, Geelong, Australia, Australia.

Department of Biomedical Sciences, Macquarie University, Macquarie Park, NSW, Australia.

出版信息

Transbound Emerg Dis. 2021 Jul;68(4):1753-1760. doi: 10.1111/tbed.13892. Epub 2021 Jan 29.

Abstract

Being able to link clinical outcomes to SARS-CoV-2 virus strains is a critical component of understanding COVID-19. Here, we discuss how current processes hamper sustainable data collection to enable meaningful analysis and insights. Following the 'Fast Healthcare Interoperable Resource' (FHIR) implementation guide, we introduce an ontology-based standard questionnaire to overcome these shortcomings and describe patient 'journeys' in coordination with the World Health Organization's recommendations. We identify steps in the clinical health data acquisition cycle and workflows that likely have the biggest impact in the data-driven understanding of this virus. Specifically, we recommend detailed symptoms and medical history using the FHIR standards. We have taken the first steps towards this by making patient status mandatory in GISAID ('Global Initiative on Sharing All Influenza Data'), immediately resulting in a measurable increase in the fraction of cases with useful patient information. The main remaining limitation is the lack of controlled vocabulary or a medical ontology.

摘要

能够将临床结果与 SARS-CoV-2 病毒株联系起来是理解 COVID-19 的关键组成部分。在这里,我们讨论了当前的流程如何阻碍可持续的数据收集,从而无法进行有意义的分析和洞察。我们遵循“快速医疗互操作性资源”(FHIR)实施指南,引入了基于本体的标准问卷,以克服这些缺点,并描述与世界卫生组织建议协调一致的患者“旅程”。我们确定了临床健康数据采集周期和工作流程中的步骤,这些步骤可能对理解这种病毒具有最大的影响。具体来说,我们建议使用 FHIR 标准详细记录症状和病史。我们已经通过在 GISAID(“全球共享流感数据倡议”)中强制要求患者状态迈出了这方面的第一步,这立即导致具有有用患者信息的病例比例明显增加。主要的剩余限制是缺乏控制词汇表或医学本体。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b7a3/8359419/81d62f131229/TBED-68-1753-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验