Suppr超能文献

基于人工智能的诊断成像算法的开发和评估的监管框架:总结和建议。

Regulatory Frameworks for Development and Evaluation of Artificial Intelligence-Based Diagnostic Imaging Algorithms: Summary and Recommendations.

机构信息

Vice Chair, Education and Clinical Operations, Department of Radiology, Stanford University School of Medicine, Stanford, California.

Institute for Cognitive Neuroscience, University College, London, UK.

出版信息

J Am Coll Radiol. 2021 Mar;18(3 Pt A):413-424. doi: 10.1016/j.jacr.2020.09.060. Epub 2020 Oct 20.

Abstract

Although artificial intelligence (AI)-based algorithms for diagnosis hold promise for improving care, their safety and effectiveness must be ensured to facilitate wide adoption. Several recently proposed regulatory frameworks provide a solid foundation but do not address a number of issues that may prevent algorithms from being fully trusted. In this article, we review the major regulatory frameworks for software as a medical device applications, identify major gaps, and propose additional strategies to improve the development and evaluation of diagnostic AI algorithms. We identify the following major shortcomings of the current regulatory frameworks: (1) conflation of the diagnostic task with the diagnostic algorithm, (2) superficial treatment of the diagnostic task definition, (3) no mechanism to directly compare similar algorithms, (4) insufficient characterization of safety and performance elements, (5) lack of resources to assess performance at each installed site, and (6) inherent conflicts of interest. We recommend the following additional measures: (1) separate the diagnostic task from the algorithm, (2) define performance elements beyond accuracy, (3) divide the evaluation process into discrete steps, (4) encourage assessment by a third-party evaluator, (5) incorporate these elements into the manufacturers' development process. Specifically, we recommend four phases of development and evaluation, analogous to those that have been applied to pharmaceuticals and proposed for software applications, to help ensure world-class performance of all algorithms at all installed sites. In the coming years, we anticipate the emergence of a substantial body of research dedicated to ensuring the accuracy, reliability, and safety of the algorithms.

摘要

虽然基于人工智能(AI)的诊断算法有望改善医疗服务,但为了促进广泛采用,必须确保其安全性和有效性。最近提出的几个监管框架为其提供了坚实的基础,但并未解决可能阻止算法被充分信任的一些问题。在本文中,我们回顾了软件作为医疗器械应用的主要监管框架,确定了主要差距,并提出了改进诊断 AI 算法开发和评估的额外策略。我们发现当前监管框架存在以下主要缺陷:(1)将诊断任务与诊断算法混淆,(2)对诊断任务定义的处理肤浅,(3)没有直接比较类似算法的机制,(4)对安全和性能要素的特征描述不足,(5)缺乏资源来评估每个安装站点的性能,以及(6)固有的利益冲突。我们建议采取以下额外措施:(1)将诊断任务与算法分开,(2)定义超出准确性的性能要素,(3)将评估过程分为离散步骤,(4)鼓励第三方评估者进行评估,(5)将这些要素纳入制造商的开发过程。具体来说,我们建议采用类似于已经应用于药品并提议用于软件应用的四个开发和评估阶段,以帮助确保所有安装站点的所有算法都具有世界级的性能。在未来几年,我们预计将涌现出大量研究,致力于确保算法的准确性、可靠性和安全性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a710/7574690/40b16b29d9d8/gr1_lrg.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验