Suppr超能文献

基于碳纳米笼的纳米酶作为内源性 HO 激活的氧发生器用于食管癌的实时双模态成像和增强光疗。

Carbon nanocage-based nanozyme as an endogenous HO-activated oxygenerator for real-time bimodal imaging and enhanced phototherapy of esophageal cancer.

机构信息

Department of Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, P.R. China.

Department of Ultrasound in Medicine, Shanghai Institute of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, P.R. China and Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai 200240, P.R. China.

出版信息

Nanoscale. 2020 Nov 5;12(42):21674-21686. doi: 10.1039/d0nr05945e.

Abstract

Intelligent phototherapy by theranostic nanosystems that can be activated by a tumor microenvironment has high sensitivity and specificity. However, hypoxia and low drug accumulation in tumors greatly limit its clinical application. Herein, we have designed a cage-like carbon-manganese nanozyme, which effectively relieves tumor hypoxia and delivers numerous photosensitizers (PSs) to the tumor site, for real-time imaging and enhanced phototherapy of esophageal cancer. Specifically, bovine serum albumin (BSA) was used as a template and reducing agent for preparing a BSA-MnO2 nanozyme; then a BSA-MnO2/IR820@OCNC (BMIOC) nanosystem was successfully synthesized by crosslinking BSA-MnO2 on the surface of IR820-loaded carboxylated carbon nanocages (OCNCs). Abundant PSs were successfully delivered to tumor sites via hollow OCNCs, and the final loading rate of IR820 reached 42.8%. The intratumor BMIOC nanosystem can be initiated by a tumor microenvironment to switch on its magnetic resonance (MR) imaging signal, and photothermal therapy (PTT) and photodynamic therapy (PDT) functions. Notably, the BSA-MnO2 nanozyme, with intrinsic catalase (CAT)-like activity, catalyzed endogenous H2O2 for oxygen generation to overcome tumor hypoxia and enhance PDT, thereby leading to more efficient therapeutic effects in combination with OCNC-elevated PTT. In addition, the H2O2-activated and acid-enhanced properties enable our nanosystem to be specific to tumors, protecting normal tissues from damage. By integrating a high drug loading capacity, a hypoxia regulation function, an enlarged phototherapy effect, and bimodal imaging into a nanozyme-mediated nanoreactor, this work realizes a "one for all" system and represents promising clinical translation for efficient esophageal cancer theranostics.

摘要

基于治疗诊断一体化纳米系统的智能光疗能被肿瘤微环境激活,具有高灵敏度和特异性。然而,肿瘤中的缺氧和低药物蓄积极大地限制了其临床应用。在此,我们设计了一种笼状碳锰纳米酶,可有效缓解肿瘤缺氧并将大量光敏剂(PSs)递送到肿瘤部位,用于食管癌的实时成像和增强光疗。具体来说,牛血清白蛋白(BSA)被用作制备 BSA-MnO2 纳米酶的模板和还原剂;然后,通过交联负载 IR820 的羧基化碳纳米笼(OCNCs)表面上的 BSA-MnO2,成功合成了 BSA-MnO2/IR820@OCNC(BMIOC)纳米系统。通过中空的 OCNCs 成功地将丰富的 PS 递送到肿瘤部位,IR820 的最终负载率达到 42.8%。肿瘤内的 BMIOC 纳米系统可以被肿瘤微环境启动,从而开启其磁共振(MR)成像信号,以及光热治疗(PTT)和光动力治疗(PDT)功能。值得注意的是,具有内在过氧化物酶(CAT)样活性的 BSA-MnO2 纳米酶可催化内源性 H2O2 产生氧气以克服肿瘤缺氧并增强 PDT,从而与 OCNC 增强的 PTT 相结合产生更有效的治疗效果。此外,H2O2 激活和酸增强特性使我们的纳米系统能够特异性地针对肿瘤,保护正常组织免受损伤。通过将高药物载量、缺氧调节功能、放大的光疗效果和双模式成像集成到纳米酶介导的纳米反应器中,这项工作实现了“一药多效”系统,为高效食管癌治疗诊断提供了有前途的临床转化。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验