Suppr超能文献

无侵入性X射线情况下吞咽过程中喉关闭持续时间的估计

Estimation of laryngeal closure duration during swallowing without invasive X-rays.

作者信息

Mao Shitong, Sabry Aliaa, Khalifa Yassin, Coyle James L, Sejdic Ervin

机构信息

Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15260 USA.

Department of Communication Science and Disorders, School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, PA 15260 USA.

出版信息

Future Gener Comput Syst. 2021 Feb;115:610-618. doi: 10.1016/j.future.2020.09.040. Epub 2020 Sep 30.

Abstract

Laryngeal vestibule (LV) closure is a critical physiologic event during swallowing, since it is the first line of defense against food bolus entering the airway. Identifying the laryngeal vestibule status, including closure, reopening and closure duration, provides indispensable references for assessing the risk of dysphagia and neuromuscular function. However, commonly used radiographic examinations, known as videofluoroscopy swallowing studies, are highly constrained by their radiation exposure and cost. Here, we introduce a non-invasive sensor-based system, that acquires high-resolution cervical auscultation signals from neck and accommodates advanced deep learning techniques for the detection of LV behaviors. The deep learning algorithm, which combined convolutional and recurrent neural networks, was developed with a dataset of 588 swallows from 120 patients with suspected dysphagia and further clinically tested on 45 samples from 16 healthy participants. For classifying the LV closure and opening statuses, our method achieved 78.94% and 74.89% accuracies for these two datasets, suggesting the feasibility of implementing sensor signals for LV prediction without traditional videofluoroscopy screening methods. The sensor supported system offers a broadly applicable computational approach for clinical diagnosis and biofeedback purposes in patients with swallowing disorders without the use of radiographic examination.

摘要

喉前庭(LV)闭合是吞咽过程中的一个关键生理事件,因为它是防止食团进入气道的第一道防线。识别喉前庭状态,包括闭合、重新开放和闭合持续时间,为评估吞咽困难风险和神经肌肉功能提供了不可或缺的参考。然而,常用的影像学检查,即吞咽造影检查,受到辐射暴露和成本的严重限制。在此,我们介绍一种基于非侵入性传感器的系统,该系统可从颈部获取高分辨率的颈部听诊信号,并采用先进的深度学习技术来检测喉前庭行为。结合卷积神经网络和循环神经网络的深度学习算法是基于120例疑似吞咽困难患者的588次吞咽数据集开发的,并在16名健康参与者的45个样本上进行了进一步的临床测试。对于喉前庭闭合和开放状态的分类,我们的方法在这两个数据集上分别达到了78.94%和74.89%的准确率,这表明在不使用传统吞咽造影筛查方法的情况下,利用传感器信号进行喉前庭预测是可行的。该传感器支持的系统为吞咽障碍患者的临床诊断和生物反馈目的提供了一种广泛适用的计算方法,而无需使用影像学检查。

相似文献

引用本文的文献

10
A Review of Recurrent Neural Network-Based Methods in Computational Physiology.基于循环神经网络的计算生理学方法综述。
IEEE Trans Neural Netw Learn Syst. 2023 Oct;34(10):6983-7003. doi: 10.1109/TNNLS.2022.3145365. Epub 2023 Oct 5.

本文引用的文献

3
Learned and handcrafted features for early-stage laryngeal SCC diagnosis.用于早期喉鳞状细胞癌诊断的学习和手工特征。
Med Biol Eng Comput. 2019 Dec;57(12):2683-2692. doi: 10.1007/s11517-019-02051-5. Epub 2019 Nov 14.
6
Neck sensor-supported hyoid bone movement tracking during swallowing.吞咽过程中颈部传感器支持的舌骨运动跟踪
R Soc Open Sci. 2019 Jul 10;6(7):181982. doi: 10.1098/rsos.181982. eCollection 2019 Jul.
7
Novel automated vessel pattern characterization of larynx contact endoscopic video images.喉接触内镜视频图像的新型自动化血管模式特征描述。
Int J Comput Assist Radiol Surg. 2019 Oct;14(10):1751-1761. doi: 10.1007/s11548-019-02034-9. Epub 2019 Jul 27.
9
Big Data in Head and Neck Cancer.头颈部肿瘤中的大数据。
Curr Treat Options Oncol. 2018 Oct 25;19(12):62. doi: 10.1007/s11864-018-0585-2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验